Return to search

Adsorption on silica in Pb- and Ca-SO4-CO3 systems

Formation of Pb and Ca precipitates on a silica surface in the presence of sulphate and carbonate under neutral to alkaline condition is studied using zeta potential measurements, Scanning Electron Microscopy (SEM), and X-Ray Photoelectron Spectroscopy (XPS). The effect of carbonate on displacing sulphate is discussed. / In the Pb/sulphate system, precipitates of predominantly Pb-oxide/hydroxide formed on the silica surface. In the Pb/carbonate system, the precipitates were predominantly Pb-carbonate/hydroxy carbonate. Precipitates in both the Pb/SO$ sb4$ and Pb/CO$ sb3$ systems were dispersed by addition of sufficient carbonate, the silica surface eventually becoming free of precipitates. This dispersion was considered to be due to: a high negative surface charge density on both lead carbonate and silica; nucleation being promoted at high concentrations of carbonate, resulting in small precipitates; and increased solubility at high carbonate concentrations. / In the Ca system, calcium sulphate precipitates did not form on the silica particles while calcium carbonate precipitates did. The precipitates were not removed by increasing carbonate concentration. The difference from the Pb system is attributed to a low negative surface charge density on calcium carbonate compared to lead carbonate, leading to less dispersing conditions, and the higher solubility of calcium sulphate compared to lead sulphate.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.27252
Date January 1996
CreatorsRashchi, Fereshteh.
ContributorsFinch, J. A. (advisor)
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Engineering (Department of Mining and Metallurgical Engineering.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 001555709, proquestno: MQ29625, Theses scanned by UMI/ProQuest.

Page generated in 0.004 seconds