Return to search

FINITE AXISYMMETRIC DEFORMATION OF A THIN SHELL OF REVOLUTION.

The finite axisymmetric deformation of a thin shell of revolution is treated in this analysis. The governing differential equations are given for hyperelastic shell materials with Mooney-Rivlin and exponential strain energy density functions. These equations are solved numerically using a 4th order Runge-Kutta integration procedure. A generalized Newton-Raphson iteration process is used to systematically improve trial solutions of the differential equations. The governing differential equations are differentiated with respect to time to derive associated rate equations. The rate equations are solved numerically to generate the tangent stiffness matrix which is used to determine the load deformation history of the shell with incremental loading. Numerical examples are presented to illustrate the major characteristics of the nonlinear shell behavior and recommendations are made for future research.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/187791
Date January 1984
CreatorsKEPPEL, WILLIAM JAMES.
ContributorsDaDeppo, Donald A.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
LanguageEnglish
Detected LanguageEnglish
Typetext, Dissertation-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0018 seconds