Knelson concentrators are the most widely used semi-continuous centrifuge separators for the recovery of gold and platinum minerals by gravity methods. Bench scale characterization studies on these units provide information about the occurrence of gold in ore samples (e.g. gold particle size distribution, amount of gold recoverable by gravity) but not about the effect of operating variables for full-scale units such as top size of particle, feed rate, fluidization flow rate and rotation speed. Such work is not easily performed online on full-scale units owing to the inevitable variations in feed quality and to the impossibility of varying operating parameters systematically in the face of production requirements. To attack the problem, a pilot plant comprising a 12-in CD Knelson concentrator, a feed screen and tailing sump-pump arrangement was installed in the grinding-B circuit of Dome Mine, Porcupine Joint Venture (PJV), now Porcupine mine, Goldcorp Inc. Timmins, Ontario. The pilot plant received a bleed from the feed to the full-scale units. The pilot facility was extensively sampled in two campaigns. Fifteen tests were conducted in the first campaign and another sixteen in the second. In all 31 pilot tests, twenty six 30-minute recovery cycle tests, called "short tests" and five, 90-minute recovery cycle tests, dubbed "long tests", were conducted. Measuring recovery was the focus of the "short tests"; measuring the deterioration of recovery over time was the focus of the "long tests". The sampling protocols were designed accordingly. / Detailed metallurgical balances were made to analyze the effect of operating and design variables on the performance of 12-in pilot Knelson Concentrator as a step towards understanding full-size units and to study the mechanism of concentrate bed erosion. To gain some fundamental information about the recovery mechanism of the Knelson concentrator, percolation of dense particles in a gangue bed was investigated using a fluidized bed column in the gravitational field. / Metallurgical results indicate that operating conditions including feed rate, rotation velocity, fluidization water flow rates and top feed particle size have little impact on the shape of the recovery compared to feed size distribution. A particle size hypothesis was tested using relevant industrial Knelson concentrator data. The analysis showed that a relatively coarse feed would impact negatively on the recovery between 106 and 425 µm. On the other hand, it would make it easier to recover particles between 25 and 106 µm. A finer feed would have a bigger impact on recovery around 25 to 106 µm and would yield a GRG recovery that decreases monotonically with the decreasing of particle size. This would be linked to the natural resistance offered by the gangue particles to the percolation of gold particles, which is significant at a particle size where the gangue is most abundant. The flowing slurry may be compared to a dynamic screen, with openings roughly the order of magnitude of the dominant particle size. This finding is useful for the simulation of the Knelson units, which uses the typical recovery curve "decreasing recovery with decreasing particle size" for estimating gravity recovery and it was thought that the shape of the curve had no impact on the estimation. Now, with this finding, either the fine or coarse recovery curve will be used depending on the size distribution of the gravity circuit feed. For example, for a coarse target grind, the coarse curve could be used and, for a fine target grind, the fine curve could be used. / Les concentrateurs Knelson sont les séparateurs centrifuges semi-continus les plus utilisés pour la récupération par gravité des minéraux d'or et de platine. Des études de caractérisation par banc d'essai sur ces unités fournissent de l'information sur l'occurrence d'or dans les échantillons de minerai (ex. la distribution de dimension des particules d'or, la quantité d'or récupérable par gravité) mais non sur l'effet des variables opérationnelles sur les unités à pleine échelle, comme la dimension supérieure, la vitesse d'alimentation, le débit de fluidisation et la vitesse de rotation. Ces travaux ne sont pas faciles à effectuer en ligne sur des unités à pleine échelle en raison des inévitables variations dans la qualité de l'alimentation et l'impossibilité de varier les paramètres d'opération à cause des contraintes de production. Pour résoudre le problème, une usine pilote comprenant un concentrateur Knelson avec un diamètre du cône (DC) de 12 pouces, un tamis d'alimentation et une pompe à résidus ont été installés sur le circuit de broyage-B de Dome Mine, Porcupine Joint Venture (PJV), maintenant Porcupine mine, Goldcorp Inc., Timmins, Ontario. L'usine pilote recevait une purge de l'alimentation des unités à pleine échelle. L'installation pilote a été échantillonnée de façon intensive lors de deux campagnes. Quinze tests ont été effectués durant la première campagne et seize autres dans la deuxième. En tout 31 tests, soit vingt-six tests ayant un cycle de récupération de 30 minutes (appelés « tests courts »), et cinq tests ayant un cycle de récupération de 90 minutes (appelés « tests longs ») ont été faits. Le focus était mis sur la mesure de la récupération pour les tests courts, le focus était mis sur la détérioration du temps de récupération pour tous les tests. Le protocole d'échantillonnage a été conçu conséquemment. / Les résultants métallurgiques indiquent que les conditions l'opération telles que la vitesse d'alimentation, la vélocité de rotation, le débit de l'eau de fluidisation et la dimension des particules grossières ont eu de l'impact sur la récupération comparativement à la distribution des dimensions de l'alimentation. Une hypothèse quant à la dimension des particules a été testée en utilisant les données industrielles reliées au concentrateur Knelson. L'analyse a montré qu'une alimentation relativement grossière aurait un impact négatif sur la récupération de particules entre 106 et 425 µm. D'un autre côté, elle faciliterait la récupération des particules entre 25 et 106 µm. Une alimentation plus fine aurait un plus grand impact sur la récupération de partie autour de 25 à 106 µm et apporterait une récupération par gravité de l'or (« GRG ») qui diminuerait de façon monotone avec la diminution de la dimension des particules. Ceci serait lié à la résistance naturelle des particules de gangue à la percolation des particules d'or, ce qui est significatif à une dimension de particules où la gangue est plus abondante. Le liquide chargé s'coulant peut être comparé à un tamis dynamique, avec des ouvertures environ de l'ordre de grandeur de la dimension dominante des particules. Cette découverte est utile à la simulation des unités Knelson, qu'utilise habituellement une courbe de récupération dans laquelle « la récupération diminue avec la diminution de la dimension des particules », pour permettre l'estimation de la récupération par gravité; il était industriel de penser que la forme de la courbe n'avait pas d'impact sur l'estimation. Avec cette découverte, dorénavant la courbe de récupération, fine ou grossière, sera utilisée en fonction de la distribution des dimensions de l'alimentation du circuit gravitationnel.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.92248 |
Date | January 2010 |
Creators | Koppalkar, Sunil Kumar |
Contributors | James A Finch (Internal/Supervisor) |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Doctor of Philosophy (Department of Mining and Materials) |
Rights | All items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated. |
Relation | Electronically-submitted theses. |
Page generated in 0.0014 seconds