The algorithms used for solving the forward dynamics problem of a complex multibody system are essential for an efficient simulation of robotic systems. The efficiency is measured by the CPU time and the number of operations per number of bodies in the system. In this work, we discuss the solution of the forward dynamics problem for real-time simulations of space robotic systems using the so-called Articulated Body Method. Traditional methods use the calculation of the inverse of the generalized mass matrix. This makes the required number of operations proportional to the cube of the number of bodies in the multibody system. For real-time simulations of complex systems, O(n) algorithms seem to be the best choice because the number of operations is linearly proportional to the number of bodies. They become more efficient than O( n3) algorithms as soon as the number of bodies in the system exceeds 12--14. In this thesis, we will present a detailed discussion of O(n) algorithms derived based on the Articulated Body Method (ABM). This algorithm can be presented using Lagrangian and Hamiltonian variables. Such algorithms can be used for the real-time simulation of robotic systems by taking into account both joint-flexibility and approximations for the gear-ratio effect. A unified derivation of the ABM algorithms using both Lagrangian and Hamiltonian variables will be discussed. The intended, primary application of the algorithms is to develop real-time simulation engines for the complete robotic system of the International Space Station. The implementation and use of these algorithms will be analyzed in detail.
Identifer | oai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.99548 |
Date | January 2006 |
Creators | Wong, Pang Fei, 1979- |
Publisher | McGill University |
Source Sets | Library and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Format | application/pdf |
Coverage | Master of Engineering (Department of Mechanical Engineering.) |
Rights | © Pang Fei Wong, 2006 |
Relation | alephsysno: 002575348, proquestno: AAIMR28632, Theses scanned by UMI/ProQuest. |
Page generated in 0.0017 seconds