Return to search

Automated Generation and Visualization of Initial Construction Schedules from Building Information Models

Recent advances in digital technology have had a significant influence on the quality and speed of sharing and communicating project information in the architecture, engineering, and construction (AEC) industry. The process of acquiring the design intent in order to develop and communicate project schedules, as critical components of project delivery, have similarly been benefitting from such progress. With the relatively recent techniques of Building Information Modeling (BIM) and its capability to integrate the facility design with its construction schedule, meaningul strides have been made in improving the information flow and eventually visualizing the final schedule in 4D. However, the need for faster and more efficient ways of generating both the schedule and its 4D visualization has been growing as it directly impacts the overhead cost, and hence the bottomline, of projects. Lack of direct integration and logical interoperability between the various computer systems used for these processes deprives the industry of the power of synergy that could have resulted from such explicit assimilation of the product and process models and their respective sub-processes.
This research develops an approach that interprets 3D building information models into a source of direct input information to generate initial construction schedules for commercial building projects, which ultimately leads to automated visualization of the produced schedule in 4D BIM. By integrating an intermediate product model and generically predefined activities at domains level, it generates initial activities that capture the scope of the work in the design. The method also incorporates semi-automated sequencing algorithms that take into account the logic of support in structural construction and other factors related to work access and user preferences.
The methodology has been implemented in a computer application built to substantiate its feasibility and then evaluated with the help of volunteer professionals in the industry by using test cases. The implementation and the tests conducted demonstrated that the developed methodology is feasible and can be considered as a step forward towards complete automation in the industry, while there are still various aspects open for improvement.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-04122016-134804
Date10 May 2016
CreatorsWeldu, Yibrah Weldemihret
ContributorsKnapp, Gerald, Friedland, Carol, Zhu, Yimin, Allison, Jesse
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-04122016-134804/
Rightsrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0024 seconds