Return to search

Communicating optimization results

Thesis (M. Eng. in Logistics)--Massachusetts Institute of Technology, Engineering Systems Division, 2013. / Cataloged from PDF version of thesis. / Includes bibliographical references (p. 76-79). / With global supply chains becoming increasingly complex, leading companies are embracing optimization software tools to help them structure and coordinate their supply chains. With an array of choices available, many organizations opt for one of the numerous off-the-shelf products. Others choose instead to create their own bespoke optimization tools. While this custom approach affords greater versatility than a commercially available product, it also presents significant challenges to both the creators and users of the tool in terms of complexity. It can often be time-consuming and difficult for the users of the tool to understand and verify the results that are generated. If a decision-maker has difficulty understanding or trusting the output of a model, then the value of the tool is seriously diminished. This paper examines the challenges between the creators, or operational research engineers, and the end-users when deploying and executing complex optimization software in supply chain management. We examine the field of optimization modeling, communication methods involved, and relevant data visualization techniques. Then, we survey a group of users from our sponsoring company to gain insight to their experience using their tool. The general responses and associated crosstab analysis reveals that training and visualization are areas that have potential to improve the user's understanding of the tool, which in turn would lead to better communication between the end-users and the experts who build and maintain the tool. Finally, we present a section on current, cutting edge visualization techniques that can be adapted to influence the way a user visualizes the optimization results. / by Drake Bailey and Daniel Skempton. / M.Eng.in Logistics

Identiferoai:union.ndltd.org:MIT/oai:dspace.mit.edu:1721.1/81092
Date January 2013
CreatorsBailey, Drake (William Drake), Skempton, Daniel
ContributorsEdgar Blanco., Massachusetts Institute of Technology. Engineering Systems Division., Massachusetts Institute of Technology. Engineering Systems Division.
PublisherMassachusetts Institute of Technology
Source SetsM.I.T. Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
Format79 p., application/pdf
RightsM.I.T. theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission. See provided URL for inquiries about permission., http://dspace.mit.edu/handle/1721.1/7582

Page generated in 0.0016 seconds