<p>Integrative approaches are motivated by the desired improvement of<br />robustness, stability and accuracy. Clustering, the prevailing technique for<br />preliminary and exploratory analysis of experimental data, may benefit from<br />integration across multiple partitions. In this thesis we have proposed<br />integration methods based on non-negative matrix factorization that can fuse<br />clusterings stemming from different data sets, different data preprocessing<br />steps or different sub-samples of objects or features. Proposed methods are<br />evaluated from several points of view on typical machine learning data sets,<br />synthetics data, and above all, on data coming form bioinformatics realm,<br />which rise is fuelled by technological revolutions in molecular biology. For a<br />vast amounts of 'omics' data that are nowadays available sophisticated<br />computational methods are necessary. We evaluated methods on problem<br />from cancer genomics, functional genomics and metagenomics.</p> / <p>Предмет истраживања докторске дисертације су алгоритми кластеровања,<br />односно груписања података, и могућности њиховог унапређења<br />интегративним приступом у циљу повећања поузданости, робустности на<br />присуство шума и екстремних вредности у подацима, омогућавања фузије<br />података. У дисертацији су предложене методе засноване на ненегативној<br />факторизацији матрице. Методе су успешно имплементиране и детаљно<br />анализиране на разноврсним подацима са UCI репозиторијума и<br />синтетичким подацима које се типично користе за евалуацију нових<br />алгоритама и поређење са већ постојећим методама. Већи део<br />дисертације посвећен је примени у домену биоинформатике која обилује<br />хетерогеним подацима и бројним изазовним задацима. Евалуација је<br />извршена на подацима из домена функционалне геномике, геномике рака и<br />метагеномике.</p> / <p>Predmet istraživanja doktorske disertacije su algoritmi klasterovanja,<br />odnosno grupisanja podataka, i mogućnosti njihovog unapređenja<br />integrativnim pristupom u cilju povećanja pouzdanosti, robustnosti na<br />prisustvo šuma i ekstremnih vrednosti u podacima, omogućavanja fuzije<br />podataka. U disertaciji su predložene metode zasnovane na nenegativnoj<br />faktorizaciji matrice. Metode su uspešno implementirane i detaljno<br />analizirane na raznovrsnim podacima sa UCI repozitorijuma i<br />sintetičkim podacima koje se tipično koriste za evaluaciju novih<br />algoritama i poređenje sa već postojećim metodama. Veći deo<br />disertacije posvećen je primeni u domenu bioinformatike koja obiluje<br />heterogenim podacima i brojnim izazovnim zadacima. Evaluacija je<br />izvršena na podacima iz domena funkcionalne genomike, genomike raka i<br />metagenomike.</p>
Identifer | oai:union.ndltd.org:uns.ac.rs/oai:CRISUNS:(BISIS)101841 |
Date | 15 December 2016 |
Creators | Brdar Sanja |
Contributors | Vukobratović Dejan, Milutinović Veljko, Šenk Vojin, Crnojević Vladimir, Škrbić Srđan, Lončar-Turukalo Tatjana |
Publisher | Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, University of Novi Sad, Faculty of Technical Sciences at Novi Sad |
Source Sets | University of Novi Sad |
Language | English |
Detected Language | Unknown |
Type | PhD thesis |
Page generated in 0.0021 seconds