Les travaux présentés dans cette thèse sont lies aux problèmes de vérification de l'atteignabilité et de la terminaison de programmes qui manipulent des données entières non-bornées. On décrit une nouvelle méthode de vérification basée sur une technique d'accélération de boucle, qui calcule, de manière exacte, la clôture transitive d'une relation arithmétique. D'abord, on introduit un algorithme d'accélération de boucle qui peut calculer, en quelques secondes, des clôtures transitives pour des relations de l'ordre d'une centaine de variables. Ensuite, on présente une méthode d'analyse de l'atteignabilité, qui manipule des relations entre les variables entières d'un programme, et applique l'accélération pour le calcul des relations entrée-sortie des procédures, de façon modulaire. Une approche alternative pour l'analyse de l'atteignabilité, présentée également dans cette thèse, intègre l'accélération avec l'abstraction par prédicats, afin de traiter le problème de divergence de cette dernière. Ces deux méthodes ont été évaluées de manière pratique, sur un nombre important d'exemples, qui étaient, jusqu'a présent, hors de la portée des outils d'analyse existants. Dernièrement, on a étudié le problème de la terminaison pour certaines classes de boucles de programme, et on a montré la décidabilité pour les relations étudiées. Pour ces classes de relations arithmétiques, on présente un algorithme qui s'exécute en temps au plus polynomial, et qui calcule l'ensemble d'états qui peuvent générer une exécution infinie. Ensuite on a intégré cet algorithme dans une méthode d'analyse de la terminaison pour des programmes qui manipulent des données entières.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00805599 |
Date | 29 October 2012 |
Creators | Konecny, Filip |
Publisher | Université de Grenoble |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds