Return to search

Incipient Motion Under Shallow Flow Conditions

Laboratory experiments were conducted to investigate the effect of low relative depth and high Froude number on the dimensionless critical shear stress (Shields parameter). Spherical particles of four different densities and an 8mm diameter were used as movable test material. The relative depth ranged from 2 to 12 and the Froude number ranged from 0.36 to 1.29. The results show that the traditional Shields diagram cannot be used to predict the incipient motion of coarse sediment particles when the relative depth is below 10 and the Froude number is above 0.5, approximately. Experiments using glass balls, whose density is almost identical to that of natural gravel, show that the Shields parameter can be twice as large in shallow flows than in deep flows. The results also show that the Shields parameter is dependent on the density of the particles. Data obtained from other studies support the findings of the present work. These findings can result in significant cost savings for riprap.

Additionally, velocity profiles using a laser-Doppler velocimeter (LDV) were taken for the glass ball incipient motion experiments. The purpose of this was to study possible changes in the velocity distribution with decreasing relative depth and increasing Froude number. The results show that the von Karman and integral constants in the law of the wall do not change in the range of relative depths and Froude numbers tested. / Master of Science

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/30999
Date02 February 1999
CreatorsKanellopoulos, Paul M.
ContributorsCivil Engineering, Diplas, Panayiotis, Dancey, Clinton L., Loganathan, G. V.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/
RelationThesis.pdf

Page generated in 0.0022 seconds