El presente trabajo consta de tres capítulos, cada uno de ellos dedicado a una forma particular de generalizar la entropía.
En el capítulo 2 se consideran familias dependientes de un parámetro y se muestran resultados acerca de su invarianza y otras propiedades. Se pondrá especial énfasis en analizar si los miembros de la familia proveen nueva información. La respuesta en el caso ergódico es negativa. Esta afirmación, como veremos, no contradice los resultados de la literatura física siempre y cuando la entropía usada en la misma sea interpretada adecuadamente. También se obtienen cotas de la entropía respecto al conjunto de medidas invariantes; de esta manera aparecerá lo que llamaremos entropía topológica generalizada, de la cual se hacen varias consideraciones en distintas subsecciones.
En el capítulo 3 se introducen entropías asociadas a secuencias de palabras en un grupo que actúa sobre un espacio de medida, allí se relacionan estas entropías con las asociadas a acciones de grupos sobre un espacio métrico.
Finalmente, el capítulo 4 estará dedicado a considerar entropías funcionales usando particiones de la unidad y dinámicos determinados por acciones de grupos. Resultados relacionados con flujos serán presentados en un apéndice. / Tesis digitalizada en SEDICI gracias a la Biblioteca Central de la Facultad de Ciencias Exactas (UNLP).
Identifer | oai:union.ndltd.org:SEDICI/oai:sedici.unlp.edu.ar:10915/2557 |
Date | January 2000 |
Creators | Mesón, Alejandro |
Contributors | Vericat, Fernando, Grigera, J. Raúl (asesor científico) |
Source Sets | Universidad Nacional de La Plata, Sedici |
Language | Spanish |
Detected Language | Spanish |
Type | Tesis, Tesis de doctorado |
Rights | http://creativecommons.org/licenses/by/3.0/, Creative Commons Attribution 3.0 Unported (CC BY 3.0) |
Page generated in 0.0015 seconds