La reconstruction précise d’une scène 3D à partir de plusieurs caméras offre un contenu synthétique 3D à destination de nombreuses applications telles que le divertissement, la télévision et la production cinématographique. Cette thèse propose une nouvelle approche pour la reconstruction 3D multi-vues basée sur l’enveloppe visuelle et la stéréovision multi-oculaire. Cette approche nécessite en entrée l’enveloppe visuelle et plusieurs jeux d’images rectifiées issues de différentes unités multiscopiques constituées chacune de plusieurs caméras alignées et équidistantes. Nos contributions se situent à différents niveaux. Le premier est notre méthode de stéréovision multi-oculaire qui est fondée sur un nouvel échantillonnage de l’espace scénique et fournit une carte de matérialité exprimant la probabilité pour chaque point d’échantillonnage 3D d’appartenir à la surface visible par l’unité multiscopique. Le second est l’hybridation de cette méthode avec les informations issues de l’enveloppe visuelle et le troisième est la chaîne de reconstruction basée sur la fusion des différentes enveloppes creusées tout en gérant les informations contradictoires qui peuvent exister. Les résultats confirment : i) l’efficacité de l’utilisation de la carte de matérialité pour traiter les problèmes qui se produisent souvent dans la stéréovision, en particulier pour les régions partiellementoccultées ; ii) l’avantage de la fusion des méthodes de l’enveloppe visuelle et de la stéréovision multi-oculaire pour générer un modèle 3D précis de la scène. / Accurate reconstruction of a 3D scene from multiple cameras offers 3D synthetic content tobe used in many applications such as entertainment, TV, and cinema production. This thesisis placed in the context of the RECOVER3D collaborative project, which aims is to provideefficient and quality innovative solutions to 3D acquisition of actors. The RECOVER3Dacquisition system is composed of several tens of synchronized cameras scattered aroundthe observed scene within a chromakey studio in order to build the visual hull, with severalgroups laid as multiscopic units dedicated to multi-baseline stereovision. A multiscopic unitis defined as a set of aligned and evenly distributed cameras. This thesis proposes a novelframework for multi-view 3D reconstruction relying on both multi-baseline stereovision andvisual hull. This method’s inputs are a visual hull and several sets of multi-baseline views.For each such view set, a multi-baseline stereovision method yields a surface which is usedto carve the visual hull. Carved visual hulls from different view sets are then fused iterativelyto deliver the intended 3D model. Furthermore, we propose a framework for multi-baselinestereo-vision which provides upon the Disparity Space (DS), a materiality map expressingthe probability for 3D sample points to lie on a visible surface. The results confirm i) theefficient of using the materiality map to deal with commonly occurring problems in multibaselinestereovision in particular for semi or partially occluded regions, ii) the benefit ofmerging visual hull and multi-baseline stereovision methods to produce 3D objects modelswith high precision.
Identifer | oai:union.ndltd.org:theses.fr/2016REIMS021 |
Date | 12 July 2016 |
Creators | Ismael, Muhannad |
Contributors | Reims, Remion, Yannick, Loscos, Céline |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0019 seconds