This is an exploration of the potential for a citizen science project, with the goal to get the general public involved in microbial soil biodiversity around Uppsala, Sweden. Biodiversity serves an important role in how an ecosystem performs and functions. A large part of Earth's biodiversity exists below ground in soil, where microorganisms interact with plants. It would be beneficial to analyse the abundance and spread of some microorganisms in order to gain a better understanding of soil biodiversity. We suggest that one species family to study could be Phytophthora. Phytophthora is a genus of oomycetes that often are pathogenic, causing disease in various trees and other plants. It is unknown exactly how widespread the genus is today, making it extra interesting for the proposed study. For the general public to be able to do this a device needs to be developed that is easy to use and preferably could be used directly in the field. An isothermal amplification method is suitable for identifying the microorganism under these conditions. Many isothermal amplification methods are expensive, perhaps too expensive for a citizen science study, but have great potential for easy field testing. We propose a device utilizing RPA and lateral flow strips. RPA - Recombinase Polymerase Amplification is a method for amplification that might be suitable since it is simple, sensitive, and has a short run time. It is however expensive, which is an issue, but isothermal amplifications are expensive across the board. Lateral flow strips can be used to visualize the results. They utilize antibodies to detect the previously amplified amplicons, and give a positive or negative test answer that would be understandable to even untrained study participants. One of the biggest obstacles identified in this project concerns amplifying DNA from a soil sample, because an extraction step is necessary. The methods we have identified for extraction are not performable in the field, since they require centrifugation. In the proposition for a device a possible work-around for this is proposed, but since it has yet to be tested it is not yet known whether it will work or not.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-444210 |
Date | January 2021 |
Creators | Godow Bratt, Tora, Stigenberg, Mathilda, Elenborg, Andreas, Ågren, Sarah, Medhage, Andreas |
Publisher | Uppsala universitet, Institutionen för biologisk grundutbildning, Uppsala universitet, Institutionen för biologisk grundutbildning, Uppsala universitet, Institutionen för biologisk grundutbildning, Uppsala universitet, Institutionen för biologisk grundutbildning, Uppsala universitet, Institutionen för biologisk grundutbildning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0024 seconds