abstract: Bacteroides have been suggested as alternative indicators of fecal pollution since they are highly abundant in feces and are thought to have limited potential to grow in environment. However, recent literature suggests that Bacteroides can potentially survive within water distribution systems. The first objective of this study was therefore to investigate the validity of Bacteroides as a fecal indicator for drinking water through laboratory experiments and field studies. Experiments were performed using a laboratory scale PVC model water distribution system that was spiked with 109 Bacteroides. Samples were collected over the following four and analyzed by culture and molecular-based techniques. Second, field studies were performed by collecting water meters from two large chlorinated water distribution systems in central Arizona. Upon removal for repair by city personnel, meters were collected and biofilms samples were gathered within two hours. The biofilms were then analyzed using culture and molecular-based assays. The results from these studies support the hypothesis that Bacteroides DNA may be found in water distribution systems despite the difficulty of cultivating these bacterial cells. These experiments present the importance of considering biofilm interactions with fecal indicator bacteria when performing molecular assays on environmental samples, as biofilms may provide protection from high oxygen concentrations and grazing protozoa in bulk water that limit the persistence Bacteroides in the environment. Although the significance of biofilm interactions with surface or recreational waters may be small, they are likely important when considering drinking water delivered through distribution systems. The second objective of this study was to investigate alternative detection methodologies for the fecal indicator Bacteroides. In particular, this study focused on using a simplified protocol of Nucleic Acid Sequence Based Amplification (NASBA) and Thermophilic Helicase-Dependent Amplification (tHDA) to amplify the highly conserved 16s rRNA gene in the genomic DNA of fecal indicator Bacteroides. The results of this study show that the simplified NASBA procedure was not able to amplify the target, while continuous problems with tHDA exposed the methods lack of reliability. These results suggest higher reliability in the isothermal amplification methods needs to be achieved before application to environmental samples. / Dissertation/Thesis / M.S. Civil and Environmental Engineering 2012
Identifer | oai:union.ndltd.org:asu.edu/item:14962 |
Date | January 2012 |
Contributors | Dunkin, Nathan (Author), Abbaszadegan, Morteza (Advisor), Alum, Absar (Committee member), Fox, Peter (Committee member), Arizona State University (Publisher) |
Source Sets | Arizona State University |
Language | English |
Detected Language | English |
Type | Masters Thesis |
Format | 105 pages |
Rights | http://rightsstatements.org/vocab/InC/1.0/, All Rights Reserved |
Page generated in 0.0016 seconds