As the global demand for energy rises, there are significant efforts to find alternative energy sources. In the United States (US), these efforts are primarily motivated by a desire to increase energy security and reduce the potential impacts on climate change caused by carbon dioxide emissions from the burning of fossil fuels. Biofuels are considered a potential partial solution, which are being encouraged through public policy. Cellulosic ethanol is a biofuel that is required in increasing amounts over time as part of the Renewable Fuel Standards. Thus, researchers are exploring the environmental impacts of using this biofuel on a large scale. This dissertation research performed an environmental evaluation using the Life Cycle Assessment technique on Bioenergy Sorghum, a crop which was specifically produced as an energy crop, used in a conversion process (MixAlco version 1) that can produce cellulosic ethanol.
Results indicate that the conversion process is highly optimized with minimal environmental concerns. Analysis of the crop production, however, demonstrate that further investigation is warranted regarding the depletion of natural resources and emissions from the fertilizers and pesticides/herbicides, due to large scale production of energy crops. A new policy is proposed to support the sustainable, environmentally responsible development of cellulosic ethanol in the US.
Identifer | oai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2011-05-9291 |
Date | 2011 May 1900 |
Creators | Hurtado, Lisa Diane |
Contributors | Russell, B. Don, Autenrieth, Robin |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | application/pdf |
Page generated in 0.0018 seconds