Environmental costs of products are closely related to their environmental impacts incurred at all life cycle stages of a product. Life Cycle Assessment (LCA) and Life Cycle Costing (LCC) methods are often used to estimate these environmental costs and impacts. However, LCA analysis is known to be a costly and time-consuming method, whereas LCC analysis often neglects the social cost which is currently paid by society as a whole. Therefore, this research proposes a new methodology to assess the environmental impact and social cost for the entire life cycle of a product, which can be used as a simple and transparent tool for the early conceptual design stage. The methodology delivers the Environmental Impact Drivers and the associated Social Cost Drivers for all product life cycle stages via spreadsheets, and it provides the Life Cycle Impact Assessment (LCIA) method in the SimaPro software as a user interface. Furthermore, the drivers provide the values for four different geographical regions and damage categories. The conceptual model is based on the impact pathway approach which integrates the Simplified LCA (SLCA) model and the social cost databases. The SLCA model is derived from an extension of previous research whereas the social costs are based on the most suitable Economic Valuation (EV) studies such as the EPS2000d, EXMOD, Ecosense and Asian EV studies. The data collection for the SLCA database was accomplished by using the LCA analysis of the Eco Indicator 99 H/A method and the Hierarchical clustering technique. The data for the social cost database was collected using the Benefit Transfer Method which obtains the EV studies mainly from the Environmental Valuation Reference Inventory (EVRI) data source. Several case studies utilising existing products, including a product redesign case study were used to prove the concept and demonstrate the efficiency of this proposed methodology.
Identifer | oai:union.ndltd.org:ADTP/257440 |
Date | January 2007 |
Creators | Manmek, Suphunnika, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://unsworks.unsw.edu.au/copyright, http://unsworks.unsw.edu.au/copyright |
Page generated in 0.002 seconds