Return to search

Life cycle analysis of sediment control devices

Sediment control devices (SCDs) are critical to reducing the contamination of waterways from adjacent construction sites. Perimeter sediment controls retard the flow of surface runoff water originating on site and subsequently reduce solid, nutrient, and metal concentrations suspended in the flowing water. Silt fence is a commonly used SCD comprised of geotextile filter fabric, steel or wood support posts, and wire mesh reinforcement. The Georgia Department of Transportation (GDOT) uses an extensive amount of silt fence every year, and because of high degradation of geotextile in the field, the silt fence installations are rarely recycled. This research measures the performance of five SCDs (two types of silt fence, mulch berm, compost sock, and straw bales) at suspended solid, turbidity, nutrient, and metal reduction. A life cycle analysis (LCA) is performed to identify environmental impacts associated with material production, assembly, installation, use on site, and disposal. An impact analysis is performed according to for each SCD. Results of the impact analysis are compared to determine the SCD with lowest overall environmental impact. Results of the SCD performance study show that silt fence installations performed the best at reducing suspended solids and turbidity, mulch was best at reducing nutrients, and compost was the best at reducing metal concentrations. The life cycle impact analysis indicates that a mulch berm is the SCD with the lowest overall environmental impact. The impact analysis included global warming potential, acidification, eutrophication, and aquatic toxicity.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/49105
Date20 September 2013
CreatorsTroxel, Cameron Francis
ContributorsBurns, Susan E.
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeThesis
Formatapplication/pdf

Page generated in 0.0025 seconds