Return to search

Radium Isotopes as Tracers of Groundwater-Surface Water Interactions in Inland Environments

<p>Groundwater has an important role in forging the composition of surface water, supplying nutrients crucial for the development of balanced ecosystems and potentially introducing contaminants into otherwise pristine surface water. Due to water-rock interactions radium (Ra) in groundwater is typically much more abundant than in surface water. In saline environments Ra is soluble and is considered a conservative tracer (apart for radioactive decay) for Ra-rich groundwater seepage. Hence in coastal environments, where mostly fresh groundwater seep into saline surface water, Ra has been the prominent tracer for tracking and modeling groundwater seepage over more than three decades. However, due to its reactivity and non-conservative behavior, Ra is rarely used for tracing groundwater seepage into fresh or hypersaline surface water; in freshwater, Ra is lost mostly through adsorption onto sediments and suspended particles; in hypersaline environments Ra can be removed through co-precipitation, most notably with sulfate salts. </p><p>This work examines the use of Ra as a tracer for groundwater seepage into freshwater lakes and rivers and into hypersaline lakes. The study examines groundwater-surface water interactions in four different environments and salinity ranges that include (1) saline groundwater discharge into a fresh water lake (the Sea of Galilee, Israel); (2) modification of pore water transitioning from saline to freshwater along their flow through sediments (pore water in sediments underlying the Sea of Galilee, Israel); (3) fresh groundwater discharge into hypersaline lakes (Sand Hills, Nebraska); and (4) fresh groundwater discharge into a fresh water river (Neuse River, North Carolina). In addition to measurement of the four Ra isotopes (<super>226</super>Ra, <super>228</super>Ra, <super>223</super>Ra, <super>224</super>Ra), this study integrates geochemical (major and trace elements) with additional isotopic tools (strontium and boron isotopes) to better understand the geochemistry associated with the seepage process. To better understand the critical role of salinity on Ra adsorption, this study includes a series of adsorption experiments. The results of these experiments show that Ra loss through adsorption decreases with increasing salinity, and diminishes in salinity as low as ~5% of the salinity of seawater. </p><p>Integration of the geochemical data with mass-balance models corrected for adsorption allows estimating groundwater seepage into the Sea of Galilee (Israel) and the Neuse River (North Carolina). A study of the pore water underlying the Sea of Galilee shows significant modifications to the geochemistry and Ra activity of the saline pore water percolating through the sediments underlying the lake. In high salinity environments such as the saline lakes of the Nebraska Sand Hills, Ra is shown to be removed through co-precipitation with sulfate minerals, its integration into barite (BaSO<sub>4</sub>) is shown to be limited by the ratio of Ra:Ba in the precipitating barite. </p><p>Overall, this work demonstrates that Ra is a sensitive tracer for quantifying groundwater discharge even in low-saline environments. Yet the high reactivity of Ra (adsorption, co-precipitation, production of the short-lived isotopes) requires a deep understanding of the geochemical processes that shape and control Ra abundances in water resources.</p> / Dissertation

Identiferoai:union.ndltd.org:DUKE/oai:dukespace.lib.duke.edu:10161/4971
Date January 2011
CreatorsRaanan Kiperwas, Hadas
ContributorsVengosh, Avner
Source SetsDuke University
Detected LanguageEnglish
TypeDissertation

Page generated in 0.2698 seconds