Return to search

The Impact of Hypoxia on Mercury Methylation in Bottom Sediment of Northern Gulf of Mexico

Widespread concern has developed about high mercury content in fish in the Gulf of Mexico and adjacent estuaries and bays. Among the areas implicated as possible sources of the mercury that moves up the food chain from the methylmercury formed in sediments and anoxic waters is the seasonal hypoxic zone in the northern Gulf. This research was designed to determine if methylmercury formation is stimulated by the anaerobic sediment conditions accompanying the onset of summer hypoxia in the Gulf. Both field and laboratory studies were carried out. For the field study sediment samples were collected at three stations (i.e. C4, C6B and C8) along hypoxic transect C established by Nancy Rabalais at a monthly interval from April 05 to April 06 for total and methyl mercury analyses. In-situ concentrations of dissolved oxygen, temperature and salinity of bottom waters were measured using a hydro-lab. For the laboratory study the effects of anaerobic conditions and organic matter contents on methylation rate were investigated using sediment-water columns. The most probable number (MPN) of the sulfate reducing bacteria in sediments was enumerated to obtain insights into the microbial mechanism of mercury methylation. Seasonal variations in methylmercury concentrations were observed at three stations with the peak in spring 2005. This seasonal pattern might be attributed to the seasonal inputs of freshwater from the Mississippi river into the gulf. Annual average concentrations of methyl mercury were 0.31, 0.47 and 0.12 ug/kg at C4, C6B and C8, respectively. Annual averages of total mercury concentrations were 37.79, 41.06 and 11.02 ug/kg for C4, C6B and C8, respectively. Sediment texture may explain the spatial variations of methyl and total mercury among the stations. Statistical analyses indicate that the dissolved oxygen (P<0.0001), temperature (P=0.03) and sediment texture (P=0.001) significantly affected the methyl mercury concentration. The laboratory study indicates that organic matter was an important factor in controlling the rate of mercury methylation.

Identiferoai:union.ndltd.org:LSU/oai:etd.lsu.edu:etd-11142006-165021
Date16 November 2006
CreatorsTan, Mei Huey
ContributorsJames Geaghan, Ronald D Delaune, Aixin Hou, Edward Overton
PublisherLSU
Source SetsLouisiana State University
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lsu.edu/docs/available/etd-11142006-165021/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached herein a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to LSU or its agents the non-exclusive license to archive and make accessible, under the conditions specified below and in appropriate University policies, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0015 seconds