Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-04-17T12:23:49Z
No. of bitstreams: 1
Tiago Martins Ribeiro.pdf: 2146814 bytes, checksum: c04c7e63303157b4345d0985576e1620 (MD5) / Made available in DSpace on 2017-04-17T12:23:49Z (GMT). No. of bitstreams: 1
Tiago Martins Ribeiro.pdf: 2146814 bytes, checksum: c04c7e63303157b4345d0985576e1620 (MD5)
Previous issue date: 2017-02-20 / CAPES / Complex optimization problems have been studied over the years by researchers seeking
better solutions, these studies have encouraged the development of several algorithms of
artificial intelligence, and a part of them are bio-inspired methods, based on the behavior of
populations. These algorithms target to develop techniques based on nature in search of
solutions to these problems. In this work, was introduced as a purpose, an algorithm based
on the behavior of locust swarms, the Locust Swarm Optimizer (LSO). The behavior of the
desert locust is introduced highlighting the formation of clouds of attacks caused by a
synthesized neurotransmitter monoamine, present on the insect, known as serotonin.
Observing this behavior, the LSO was developed. It was compared to other known
artificial intelligence techniques through 23 benchmark functions and also tested on an
power system economical dispatch problem. From the point of view of the results and the
ease of implementation, it can be concluded that the LSO algorithm is very competitive as
compared to existing methods / Problemas complexos de otimização vêm sendo estudados ao longo dos anos por
pesquisadores que buscam melhores soluções, estes estudos incentivaram o
desenvolvimento de vários algoritmos de inteligência artificial, sendo que uma parte deles
são métodos bioinspirados, baseados no comportamento de populações. Estes algoritmos
têm como objetivo desenvolver técnicas baseadas na natureza em busca de soluções para
estes problemas. Neste trabalho um algoritmo baseado no comportamento de enxames de
gafanhotos-do-deserto, o Locust Swarm Optimizer (LSO), foi introduzido como objetivo.
O comportamento do gafanhoto-do-deserto é apresentado destacando a formação de
nuvens de ataques causada por uma monoamina neurotransmissora sintetizada, presente no
inseto, conhecido por serotonina. Observando este comportamento, foi desenvolvido o
LSO. Ele foi comparado com outras conhecidas técnicas de inteligência artificial através
de 23 funções benchmarks e também, testado em um problema de despacho econômico.
Do ponto de vista dos resultados e da facilidade de implementação, pode-se concluir que o
algoritmo LSO é bastante competitivo comparado aos métodos atuais existentes.
Identifer | oai:union.ndltd.org:IBICT/oai:tede2:tede/1294 |
Date | 20 February 2017 |
Creators | RIBEIRO, Tiago Martins |
Contributors | PAUCAR, Vicente Leonardo |
Publisher | Universidade Federal do Maranhão, PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE ELETRICIDADE/CCET, UFMA, Brasil, DEPARTAMENTO DE ENGENHARIA DA ELETRICIDADE/CCET |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFMA, instname:Universidade Federal do Maranhão, instacron:UFMA |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0022 seconds