Return to search

QUANTIFYING CELLULASE IN HIGH-SOLIDS ENVIRONMENTS

In recent years, fungal and bacterial cellulases have gained popularity for the conversion of lignocellulosic material to biofuels and biochemicals. This study investigated properties of fungal (Trichoderma. reesei) and bacterial (Clostridium thermocellum) cellulases. Enzymatic hydrolysis was carried out with T. reesei using nine enzyme concentration and substrate combinations. Initial rates and extents of hydrolysis were determined from the progress curve of each combination. Inhibition occurred at the higher enzyme concentrations and higher solids concentrations. Mechanisms to explain the observed inhibition are discussed. Samples of C. thermocellum purified free cellulase after 98% hydrolysis were assayed to determine the total protein content (0.15 ± 0.08 mg/mL), the enzymatic activity (0.306 ± 0.173 IU/mL) and the cellulosome mass using the Peterson method for protein determination, the cellulase activity assay with phenol-sulfuric acid assay, and the indirect ELISA adapted for C. thermocellum cellulosomes, respectively. Issues regarding reproducibility and validity of these assays are discussed.

Identiferoai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_theses-1552
Date01 January 2008
CreatorsAbadie, Alicia Renée
PublisherUKnowledge
Source SetsUniversity of Kentucky
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUniversity of Kentucky Master's Theses

Page generated in 0.0017 seconds