Return to search

Dye decolourization by immobilized laccase and impact of auxiliary chemicals on dye decolourization

Textile dyes are molecules designed to impart a permanent colour to textile fabrics. They pose an environmental problem because they are toxic and they decrease the aesthetic value of rivers and lakes. Current technologies for dye removal cannot remove all classes of dyes and two or more technologies are usually combined to achieve statisfactory decolourization efficiencies. Lignin-degrading enzymes like laccases are potential technologies for dye decolourization and decolourization with immobilized laccase has been intensively investigated. The majority of those studies however have focused on dye disappearance and several reported that significant dye adsorption had occured during the dye removal, making the role of the enzyme unclear. Moreover, textile wastewaters contain auxiliary chemicals that can impact enzymatic dye decolourization and very few studies have evaluated the impact of those substances on laccase. This research evaluated the feasibility of treating dye-contaminated textile wastewaters with an immobilized laccase system. The first sub-objective was to examined the decolourization of Reactive blue 19 (an anthraquinone dye) by Trametes versicolor laccase immobilized on controlled porosity carrier (CPC) silica beads and the second was to analyze the kinetic effects of a non-ionic surfactant Merpol, sodium sulfate, and sodium chloride on laccase decolourization of Reactive blue 19. Decolourization of Reactive blue 19 by immobilized laccase was mainly enzymatic although dye some adsorption occurred. Decolourization led to less toxic by-products from azo and indigoid dyes whereas increased toxicity was observed for anthraquinone dyes. The feasibility of immobilizing laccase on poly(methyl methacrylate) (PMMA) through its sugar residues with a simple procedure was demonstrated and the mass of enzyme immobilized compared well with other commercial acrylic supports. The decolorization of Reactive blue 19 by laccase was inhibited by the non-ionic surfactant, Merpol by substrate depletion. A model describing this inhibition was developed and was validated by a saturated equilibrium binding experiment. While sodium sulfate (ionic strength) had no effect on either ABTS oxidation or dye decolourization, sodium chloride inhibited laccase during dye decolourization and the type and nature of the inhibition depended on the substrate. With ABTS, the inhibition was hyperbolic non-competitive whereas it was parabolic mixed with Reactive blue 19. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-06-16 16:58:47.753

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/1947
Date16 June 2009
CreatorsChampagne, Paul-Philippe
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format1382542 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0025 seconds