Return to search

The Greenhouse - Icehouse Transition : a dinoflagellate perspective

<p>Through the analysis of the stratigraphic and spatial distribution of organic walled dinoflagellate cysts (dinocysts) from climatologically and oceanographically key sites, this project aims to contribute to a better understanding of the Eocene-Oligocene (E/O) environmental changes and their timing. A central issue is to identify the global environmental changes which are responsible for the Eocene cooling and its underlying mechanisms with the focus on the Oligocene isotope-1 (Oi-1) event, thought to mark the onset of major Antarctic glaciation.</p><p>Two low-latitude sites were selected, Blake Nose (western North Atlantic) and Massignano (central Italy). For the first time a coherent taxonomy and biostratigraphy of dinocysts was established for the late Eocene at these latitudes. A high resolution correlation was established between the Massignano E/O Stratotype Section and the stratigraphically more extended ‘Massicore’. The composite section was used to analyse sea surface temperature (SST) change across the greenhouse-icehouse transition by means of dinocyst distribution.</p><p>At Massignano, the Oi-1 event was recognised both qualitatively and quantitatively. In the power spectrum of the SST<sub>dino</sub> the ~100 and ~400 kyr eccentricity cycles may be distinguished and correlated with La04. When orbitally tuned, the E/O GSSP dates ~100 kyr older than the Oi-1 event. The boundary’s age could either be ~33.75 or ~34.1 Ma, both differ significantly from the ~33.9 Ma age in the GTS 2004.</p><p>Furthermore, when the data from the low-latitude sites were combined with extensive datasets from the Proto North Atlantic and adjacent regions, a suite of species sensitive to changes in SST was recognised. Their first and last occurrences reflect seven distinct phases of decreasing SSTs during the Middle Eocene to earliest Oligocene.</p><p>These results clearly indicate that atmospheric cooling together with higher frequency orbital forcing played a key role in the transition from the Greenhouse to the Icehouse world.</p>

Identiferoai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-1073
Date January 2006
Creatorsvan Mourik, Caroline A.
PublisherStockholm University, Department of Geology and Geochemistry, Stockholm : Institutionen för geologi och geokemi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, text
RelationMeddelanden från Stockholms universitets institution för geologi och geokemi, 1101-1599 ; 1101-1599

Page generated in 0.0011 seconds