Return to search

Mechanism of action of novel single arm alkylating "combi-molecules" and bi-functional "bis-combi-molecules"

Overexpression of the epidermal growth factor receptor (EGFR), a member of the ErbB family, and its closest homologue HER2, have been associated with aggressive tumour progression and reduced sensitivity to DNA-damaging agents. In order to block the proliferation of refractory tumors overexpressing EGFR, a novel strategy has been developed that sought to design molecules capable of not only blocking EGFR-TK, but also damaging DNA. These molecules, termed combi-molecules (CMs), have been shown to degrade under physical conditions to release another inhibitor of EGFR, and to be potent against tumor cells of various origins including breast, prostate and carcinoma of the vulva. However, despite their potency, their growth inhibitory IC50 values were still in the high micromolar range. In order to augment the potency of the CMs, here they were re-designed to contain two quinazoline moieties and a central N,N-bis(2-aminoethyl)methylamine spacer which, following degradation, could yield higher concentrations of free inhibitors and a more cytotoxic bifunctional DNA damaging species. Here, we describe the mechanism of action of the first prototype of this approach, JDE52, which we now classify as a double-arm CM, in comparison with ZRBA1, its closest single-arm counterpart. The results indicated that JDE52 was capable of inducing significant blockade of EGFR, DNA single-strand breaks and inter-strand cross-links. ZRBA1, its single-arm counterpart, was capable of only forming DNA single-strand breaks. The fluorescent property of FD105, the secondary inhibitor that both JDE52 and ZRBA1 are capable of releasing, has permitted the analysis of its levels in tumor cells by UV flowcytometry. It was found that JDE52 was indeed capable of significantly releasing higher levels of fluorescence (p<0.05) in human tumor cells, compared with levels of fluorescence released by ZRBA1. More importantly, JDE52 induced higher levels of apoptosis and cell killing than ZRBA1. Apoptosis was triggered by JDE52 at a faster rate than ZRBA1. The results in toto suggest that the superior potency of JDE52, when compared with ZRBA1, may be imputed to mechanisms associated with the generation of higher levels of FD105 intracellularly, and the induction of DNA cross-links, which are known to be more cytotoxic. These combined mechanisms (blockade of EGFR-TK and formation of cross-links) contributed to an accelerated rate of apoptosis in cells treated with JDE52. This study conclusively demonstrated that designing molecules as prodrugs of high levels of quinazoline inhibitors of EGFR and bifunctional DNA cross-linking species is a valid strategy to enhance the potency of CMs against refractory tumors.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMM.112376
Date January 2008
CreatorsAl-Safadi, Sherin.
PublisherMcGill University
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Formatapplication/pdf
CoverageMaster of Science (Department of Pharmacology & Therapeutics.)
RightsAll items in eScholarship@McGill are protected by copyright with all rights reserved unless otherwise indicated.
Relationalephsysno: 002731739, proquestno: AAIMR51065, Theses scanned by UMI/ProQuest.

Page generated in 0.0018 seconds