Nesta tese, apresentamos uma metodologia concreta para calcular os controles -ótimos para sistemas estocásticos não-Markovianos. A análise trajetória a trajetória e o uso da estrutura de discretização proposta por Leão e Ohashi [36] conjuntamente com argumentos de seleção mensuráveis, nos forneceu uma estrutura para transformar um problema infinito dimensional para um finito dimensional. Desta forma, garantimos uma descrição concreta para uma classe bastante geral de problemas. / In this thesis, we present a concrete methodology to calculate the -optimal controls for non-Markovian stochastic systems. A pathwise analysis and the use of the discretization structure proposed by Leão and Ohashi [36] jointly with measurable selection arguments, allows us a structure to transform an infinite dimensional problem into a finite dimensional. In this way, we guarantee a concrete description for a rather general class of stochastic problems.
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-09022018-094900 |
Date | 13 September 2017 |
Creators | Francys Andrews de Souza |
Contributors | Dorival Leão Pinto Junior, Pedro Jose Catuogno, Marcelo Dutra Fragoso, Pablo Martin Rodriguez, Paulo Régis Caron Ruffino |
Publisher | Universidade de São Paulo, Estatística, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds