Neste trabalho consideramos sistemas de equações diferenciais parciais lineares de primeira ordem, com coeficientes analíticos, definidos em variedades analíticas reais, no caso particular em que seu coposto é igual a um. Demonstramos que esse tipo de sistema admite integrais primeiras locais, e buscamos caracterizar sua hipoelipticidade analítica local e global em termos de propriedades topológicas das mesmas. Também provamos a Fórmula de Aproximação de Baouendi-Trèves / In this work we consider systems of first-order linear partial differential equations, with analytic coefficients, defined on real-analytic manifolds, in the special case in which the corank is equal to one. We prove that this type of systems admits local first integrals, and we seek to characterize their local and global analytic hypoellipticity in terms of topological properties of these first integrals. We also prove the Baouendi-Trèves Approximation Formula
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-24042014-105800 |
Date | 25 February 2014 |
Creators | Amorim, Érik Fernando de |
Contributors | Zani, Sergio Luis |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Dissertação de Mestrado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0016 seconds