Return to search

Development and evaluation of a dynamic phantom using four independently perfused in vitro kidneys as a tool for investigating hyperthermia systems

A dynamic phantom for use in investigating hyperthermia heating systems has been designed, constructed, and tested. A computer controlled the flow rate of 80% Ethanol to each of 4 preserved in vitro canine kidneys which acted as the phantom material. The flow rates were regulated with stepper motor controlled valves and measured with flow meters by the computer. This provided a flexible system for adjusting the perfusion as desired. The system was tested with step and ramp changes in perfusion under constant power ultrasound and with a temperature controlled perfusion algorithm, all of which yielded repeatable results. The dynamic phantom developed in this work shows potential for expediting investigations of hyperthermia controllers, temporal blood flow patterns, and inverse problems. Its computer based nature gives it great flexibility which would lend itself well to automated testing procedures.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/291341
Date January 1989
CreatorsZaerr, Jon Benjamin, 1963-
ContributorsRoemer, Robert B.
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Thesis-Reproduction (electronic)
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0027 seconds