This manuscript demonstrates the well-posedness (existence, uniqueness, and regularity of solutions) of the Cauchy problem for simplified equations of nematic liquid crystal hydrodynamic flow in three dimensions for initial data that is uniformly locally L3(R3) integrable (L3U(R3)). The equations examined are a simplified version of the equations derived by Ericksen and Leslie. Background on the continuum theory of nematic liquid crystals and their flow is provided as are explanations of the related mathematical literature for nematic liquid crystals and the Navier–Stokes equations.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:math_etds-1006 |
Date | 01 January 2012 |
Creators | Hineman, Jay Lawrence |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations--Mathematics |
Page generated in 0.0021 seconds