The successful execution of goal-directed movement requires the evaluation of many levels of errors. On one hand, the motor system needs to be able to evaluate ‘high-level’ errors indicating the success or failure of a given movement. On the other hand, as a movement is executed the motor system also has to be able to correct for ‘low-level’ errors - an error in the initial motor command or change in the motor command necessary to compensate for an unexpected change in the movement environment. The goal of the present research was to provide electroencephalographic evidence that error processing during motor control is evaluated hierarchically. The present research demonstrated that high-level motor errors indicating the failure of a system goal elicited the error-related negativity, a component of the event-related brain potential (ERP) evoked by incorrect responses and error feedback. The present research also demonstrated that low-level motor errors are associated with parietally distributed ERP component related to the focusing of visuo-spatial attention and context-updating. Finally, the present research includes a viable neural model for hierarchical error processing during motor control.
Identifer | oai:union.ndltd.org:uvic.ca/oai:dspace.library.uvic.ca:1828/239 |
Date | 26 September 2007 |
Creators | Krigolson, Olave |
Contributors | Holroyd, Clay, Van Gyn, Geraldine |
Source Sets | University of Victoria |
Language | English, English |
Detected Language | English |
Type | Thesis |
Rights | Available to the World Wide Web |
Page generated in 0.0023 seconds