Return to search

Análise paramétrica de escoamento particulado aplicado ao preenchimento de fraturas

CNPq / Dentre os diversos tipos de escoamentos multifásicos, o escoamento particulado desperta interesse devido à sua presença em diversos sistemas, como na indústria farmacêutica, química e de petróleo, entre outros. Na indústria petrolífera, especificamente, o escoamento particulado pode ser utilizado quando existe o fenômeno de invasão, caracterizado pela fuga de fluido do poço em direção à formação rochosa, associado à presença de fraturas. Partículas de granulometria selecionada são adicionadas ao fluido de perfuração para promover o preenchimento das fraturas e reestabelecer a circulação no poço. Nesse sentido, o objetivo deste trabalho é investigar o escoamento particulado aplicado ao preenchimento de uma fratura perfeitamente retangular e não permeável. A modelagem matemática do escoamento utiliza uma abordagem euleriana para a fase contínua (fluido) e lagrangiana para a fase discreta (partículas). Os modelos numéricos aplicados para a solução do problema consistem no Dense Discrete Phase Model (DDPM) para o cálculo do acoplamento entre as partículas e o fluido e do Discrete Element Method (DEM) para contabilizar as colisões entre partículas. A análise em questão mostra a influência do comprimento da fratura (hF R ), de parâmetros do escoamento (número de Reynolds - Re e viscosidade dinâmica do fluido - μβ ), das partículas (diâmetro da partícula - Dp e razão entre massa específica da partícula e fluido - ρp/β ) e do processo de injeção (número de partículas injetadas - Np,inj ) sobre a formação do leito de partículas. Tal influência é analisada através do comprimento (hpct ) e posicionamento (hpct ) do leito, além do preenchimento vertical da fratura (epct ). Um leito de partículas ótimo é capaz de reduzir a vazão de fuga (Qf uga ) até um patamar próximo de zero, se formar no menor tempo possível (test ), próximo à entrada da fratura, apresentando um comprimento mínimo e um preenchimento vertical máximo. Para obter um leito ótimo, a pressão na entrada do canal (pm,CH,i ) deve ser monitorada para garantir que a pressão de fratura, que é a pressão na qual existe a falha mecânica da formação, não seja ultrapassada pela pressão gerada pela injeção de partículas. A pressão de entrada é analisada através da adimensionalização em relação à pressão no fenômeno de invasão, antes da injeção de partículas e em relação ao gradiente de pressão gerado entre a saída do canal e a saída da fratura. Os resultados obtidos mostram que todos os parâmetros são capazes de alterar as características geométricas do leito, mostrando uma influência direta na vazão de fuga e no tempo de preenchimento. / Among the most diverse types of multiphase flow, the particulate flow raises interest due to its presence in several systems such as farmaceutical, chemical and oil and gas indus- try. Specifically in the oil and gas industry the particulate flow may be applied upon the appearence of the invasion phenomenon, characterized by the fluid loss to the reservoir, associated to the presence of fractures. Particles with selected granulometry are added to the mud in order to fill the fratures and reestablish circulation. In this line, the aim of this work is to investigate the particulate flow applied to the filling of a perfectly retangular and impermeable fracture. The flow is mathematicaly modeled by an eulerian approach applied to the continuous phase (fluid) and by a lagrangian approach applied to the discrete phase (particles). The numerical models used to attain the solution of the problem are the Dense Discrete Phase Model (DDPM) which accounts for the coupling between the phases and the Discrete Element Method (DEM) which calculates particle collision. The analysis shows the influence of the fracture length (hF R ), flow paramenters (Reynolds number - Re and dynamic viscosity - μβ ), particle parameters (diameter - Dp and specific mass ratio between particles and fluid - ρp/β ) and parameters of the injection process (number of injected particles - Np,inj ) on the formation of the bed. Such influence is analyzed through the length (hpct ) and heigth (hpct ) of the bed and the vertical filling of the fracture (epct ). An optimal bed would be capable to attain a fluid loss close to zero in the least time possible (test ) by forming itself very close to the fracture entering, having a minimum length and a maximum height. In order to obtain the optimized bed, the pressure on the channel inlet (pm,CH,i ) should be monitored to guarantee that the fracturing pressure is not surpassed by the buildup pressure generated by the particles injection. This pressure is analyzed by the initial pressure on the inlet channel, before the particle injection, and the pressure drop generated by the fracture. Results indicate that all sensitivity parameters can alter the geometric characteristics of the bed, showing a direct influence on reducing the fluid loss through the fracture and on the filling time.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.utfpr.edu.br:1/1266
Date19 March 2015
CreatorsBarbosa, Marcos Vinicius
ContributorsJunqueira, Silvio Luiz de Mello, Franco, Admilson Teixeira, De Lai, Fernando César
PublisherUniversidade Tecnológica Federal do Paraná, Curitiba, Programa de Pós-Graduação em Engenharia Mecânica e de Materiais
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UTFPR, instname:Universidade Tecnológica Federal do Paraná, instacron:UTFPR
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.011 seconds