Cette thèse porte sur le comportement hydromécanique d’un mélange de poudre et pellets de bentonite MX80 avec une proportion 80/20 en masse sèche. Il s’agit d’un matériau étudié par l’Institut de Radioprotection et de Sûreté Nucléaire (IRSN) dans le cadre du projet SEALEX qui a pour objectif principal la vérification de l’efficacité des dispositifs de scellement ou des barrières ouvragées dans le system du stockage géologique des déchets radioactifs. Le comportement hydromécanique du matériau à différentes échelles a été étudié par différents essais en laboratoire. Premièrement, les changements à l’échelle microstructurale d’un seul pellet de bentonite durant l’hydratation a été abordée à l’aide de deux techniques : la porosimétrie au mercure et la tomographie aux rayons-X. Les résultats ont montré que le gonflement d’un pellet peut être expliqué par deux mécanismes : la création des fissures surtout à des succions entre 38 et 9 MPa, et le gonflement des grains de bentonite, correspondant à l’hydratation des smectites à l’échelle nano. A des succions inférieures à 9 MPa, une diminution de l’épaisseur des feuillets d’argile et une augmentation du désordre des ceux-ci sont observées. Des essais de rétention d’eau, de pression de gonflement et de compression à l’odomètre à succion contrôlée ont été effectués sur le mélange de poudre et pellets. Les propriétés de rétention d’eau sous conditions de volume constant et pour un seul pellet sous conditions de gonflement libre apparaissent similaires pour des valeurs de succion supérieures à 4 MPa. Cela implique que la succion physico-chimique est prédominante devant la succion capillaire. Pour des valeurs de succions plus basses, une capacité de rétention plus faible a été observée sous conditions de volume constant, à relier à la disparition des macro-pores par le gonflement des grains de bentonite. Des valeurs de pression de préconsolidation plus petites que celles des mélanges de bentonite pure ont été obtenues pour des succions non-nulles, montrant l’effet granulaire des pellets dans le mélange. Deux colonnes d’infiltration ont été réalisés afin d’étudier deux cas extrêmes avec une densité sèche globale identique (1.49 Mg/m3). Avec la première colonne, un mélange de poudre et pellets relativement homogène, fabriqué en suivant un protocole spécial a été étudié. En revanche, un mélange fortement hétérogène a été fabriqué dans la deuxième colonne d’infiltration. Les résultats montrent que la pression de gonflement radiale dépend fortement de la distribution des pellets et de la poudre ainsi que de l’évolution du front d’hydratation. Une anisotropie de gonflement a été observée dans les deux cas, avec la pression de gonflement axiale inférieure à celle radiale. De plus, la valeur finale de pression de gonflement axiale est différente pour les deux colonnes, bien que les deux échantillons aient fabriquées avec la même densité sèche globale. En parallèle, plusieurs observations à la tomographie aux rayons-X ont été réalisées sur le mélange de pellets et poudre pendant l’hydratation. Un mélange complètement homogène a été observé après 100 jours d’hydratation à l’échelle étudiée (50 μm/voxel). Un nouveau modèle d’endommagement qui prend en compte des fissures observées au sein du pellet pendant hydratation a été développé en adaptant le Barcelona Expansive Model (BExM). L’essai d’infiltration sur l’échantillon relativement homogène a été simulé avec succès en utilisant le modèle développé. L’hétérogénéité initiale de la porosité a été aussi considérée dans la simulation afin de reproduire l’anisotropie de gonflement. Les résultats expérimentaux obtenus dans le cadre de cette étude permettent de mieux comprendre la réponse des ouvrages de scellement avec le mélange de pellets et poudre de bentonite dans le projet SEALEX. De plus, le modèle développé, qui prend en compte des fissures observées au sein du pellet et l’hétérogénéité initiale du matériau, permettra d’améliorer / The present investigation deals with the hydro-mechanical behavior of a mixture composed of pellets and powder of MX80 bentonite with a proportion of 80/20 in dry mass. This is one of the studied materials by the French Institute for Radiation protection and Nuclear Safety (IRSN) within the SEALEX project, which aims at investigating the long-term performance of swelling clay-based sealing systems in the context of geological high-level radioactive waste disposal. This study has been conducted by following an experimental program covering different scales. Firstly, the microstructure changes while wetting of a single pellet was investigated by combining MIP results with μ-CT observations. Results revealed that swelling of a pellet is due to the development of cracks, with significant development between 38 and 9 MPa of suction, combined to swelling of bentonite grains, which is governed by the hydration mechanisms of smectite at nano-scale. The application of suctions below 9 MPa leads to a significant decrease of the platelet thickness and to an increase in the disorder of the platelet assembly. Water retention tests, swelling pressure tests and suction controlled oedometer tests on the pellet/powder mixture were performed. Similar water retention properties were observed for the mixture under constant-volume condition and pellet under free swelling condition under suctions higher than 4 MPa, suggesting that physico-chemical suction prevails on capillary suction. At lower suctions, constant-volume condition defined a lower water retention capacity because of the disappearance of macro-pores. Lower yield stress values than the common pure bentonite mixtures were found for the pellet/powder mixture for non-zero suctions, showing that the volume change behavior is governed by the rearrangement and crushing of pellets, and the loss of the granular structure in the case of zero suction. Two mock-up tests were performed, aiming at studying two extreme cases at a global dry density of 1.49 Mg/m3: a homogeneous pellet/powder mixture fabricated by following a special protocol, and a strong heterogeneous sample. Results revealed that the radial swelling pressure depends strongly on the local pellet/powder distribution combined with the evolution of the hydration front. An anisotropy swelling was found in both cases, being the axial swelling pressure lower than the radial one. Moreover, different values of axial pressure were found between the two tests, even though they have the same global dry density of samples. In parallel, μ-CT observations were carried out on the mixture while wetting, revealing a homogeneous sealed sample after 100 days of hydration. No density gradients were identified at the investigated resolution (50 μm/voxel) after this long time of hydration. A new damage model, which takes into account the development of fissures within a pellet while wetting, was proposed an included to the well-IVknown double porosity Barcelona Expansive Model (BExM) to carry out numerical simulations of one mock-up test. The initial heterogeneous porosity distribution was also considered to reproduce the anisotropy swelling. The experimental results obtained in this study will greatly help well understand the response of seals made up of pellets/powder bentonite mixture in the SEALEX in situ experiment. Moreover, the constitutive model developed taking into account the pellet cracking damage and the initial sample heterogeneity allows significantly improving the prediction of hydomechanical behavior of seals/plugs made up of this mixture, constituting thus an useful tool for the safety assessment of the nuclear waste disposal system
Identifer | oai:union.ndltd.org:theses.fr/2018PESC1022 |
Date | 29 June 2018 |
Creators | Molinero Guerra, Agustin |
Contributors | Paris Est, Cui, Yu Jun |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.002 seconds