Return to search

The Treatment of Benzene, Toluene, Ethylbenzene and o-Xylene Using Two-Phase Partitioning Bioscrubbers

This thesis examined the biological treatment of gas streams containing benzene, toluene, ethylbenzene and o-xylene (BTEX) using solid-liquid two-phase partitioning bioscrubbers (SL-TPPBs). SL-TPPBs consist of a cell containing aqueous phase and a polymeric solid phase that sequesters poorly water soluble and/or toxic substrates, mitigating substrate toxicity in the aqueous phase and improving the gas mass transfer during treatment of VOC contaminated gases.
An initial investigation of oxygen transport determined that the polymers in a stirred-tank SL-TPPB enhance gas-liquid mass transfer. In addition, a study on biodegradation kinetics of BTEX by a bacterial consortium identified and quantified substrate interactions such as inhibition, enhancement and cometabolism. The stirred-tank SL-TPPB was then experimentally investigated for treatment of BTEX gas streams during steady-state and dynamic step-change operation to determine performance of the system relative to other biotreatment methods. A mathematical model was developed to predict system performance, which included the microbial kinetic model structure and parameters estimated during kinetic and oxygen mass transfer studies.
As a less energy intensive alternative, an airlift SL-TPPB was operated and characterized. The airlift SL-TPPB was compared to an airlift liquid-liquid TPPB (silicone oil as sequestering phase) and a single phase airlift over dynamic step-change loadings, which showed that the airlift SL-TPPB outperformed the single phase airlift by >30% and had similar performance to the liquid-liquid airlift. However, the airlift SL-TPPB performance was lower relative to the stirred-tank SL-TPPB by >15%. Steady-state operation of the airlift SL-TPPB identified a range of operating conditions that provided maximum performance and conditions that were not oxygen limited. This prompted a study of oxygen mass transfer and hydrodynamics in the airlift system, which identified that the addition of polymers to an airlift does not cause physical enhancement of the gas-liquid mass transfer coefficient, but improves aqueous phase mixing and enhances overall oxygen transfer rate. A tanks-in-series mathematical model was formulated to predict performance of the airlift SL-TPPB, wherein the number of tanks-in-series to describe mixing in the airlift was obtained from a residence time distribution analysis of the airlift system completed during the hydrodynamic investigation. This thesis contributes a low-energy solution for the effective treatment of gases contaminated with BTEX. / Thesis (Ph.D, Chemical Engineering) -- Queen's University, 2009-08-18 16:16:22.598

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:OKQ.1974/5065
Date20 August 2009
CreatorsLITTLEJOHNS, JENNIFER
ContributorsQueen's University (Kingston, Ont.). Theses (Queen's University (Kingston, Ont.))
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
LanguageEnglish, English
Detected LanguageEnglish
TypeThesis
Format3365289 bytes, application/pdf
RightsThis publication is made available by the authority of the copyright owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted by the copyright laws without written authority from the copyright owner.
RelationCanadian theses

Page generated in 0.0029 seconds