OLIVEIRA FILHO, Narcélio Silva de. Regularidade para equações quase lineares em conjuntos singulares degenerados. 2015. 34 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Rocilda Sales (rocilda@ufc.br) on 2015-07-14T13:52:37Z
No. of bitstreams: 1
2015_dis_nsoliveirafilho.pdf: 714573 bytes, checksum: a9d4adbf2d0cae1cdbd50d60fd1083e0 (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-07-14T13:53:13Z (GMT) No. of bitstreams: 1
2015_dis_nsoliveirafilho.pdf: 714573 bytes, checksum: a9d4adbf2d0cae1cdbd50d60fd1083e0 (MD5) / Made available in DSpace on 2015-07-14T13:53:14Z (GMT). No. of bitstreams: 1
2015_dis_nsoliveirafilho.pdf: 714573 bytes, checksum: a9d4adbf2d0cae1cdbd50d60fd1083e0 (MD5)
Previous issue date: 2015 / We will study a new universal gradient continuity estimate for solutions to quasi-linear equations with varying coefficients at singular set of degeneracy: S(u) := {X : Du(X) = 0}. Ourmain theorem reveals that along S(u), u is asymptotic as regular as solutions to constant coefficient equations. In particular, along the critical set S(u),u enjoys a modulus of continuity much superior than the possibly low, continuity feature of the coefficients. The results are new even in the context of linear elliptic equations, where it is herein shown that H^1- weak solutions to div (a(X,Du))= 0 with aij elliptic and dinicontinuous are actually C ^{1,1^{-}} along S(u). The results and insights of this work foster a new understanding os smoothness properties of solutions to degenerate or singular equations, beyond typical elliptic regularity estimates, precisely where the diffusion attributes of the equation collapse. / Neste trabalho estudaremos uma nova estimativa universal para a continuidade do gradiente de soluções para equações quase lineares com coeficientes variáveis em conjuntos singulares degenerados que serão denotados por S(u) := {X : Du(X) = 0} . O resultado principal deste trabalho revela que ao longo de S(u), u é assintoticamente tão regular quanto as soluções das equações com coeficientes constantes. Em particular, ao longo do conjunto S(u), Du tem um módulo de continuidade superior a baixa característica de continuidade de seus coeficientes. Os resultados são novos e mesmo no contexto de equações diferenciais lineares onde se mostra que soluções H^1- fracas da equação div(a(X, Du)) = 0 com os aij elípicos e Dini-Contínuos são realmente C ^{1,1^{-}} ao longo de S(u). Os resultados e as perspectivas deste trabalho promovem um novo entendimento sobre as propriedades suavidade de soluções para equações singulares, ou degeneradas, além de estimativas típicas sobre regularidade elípticas, precisamente onde temos os atributos de difusão do equação do colapso.
Identifer | oai:union.ndltd.org:IBICT/oai:www.repositorio.ufc.br:riufc/12999 |
Date | January 2015 |
Creators | Oliveira Filho, Narcélio Silva de |
Contributors | Ricarte, Gleydson Chaves |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Source | reponame:Repositório Institucional da UFC, instname:Universidade Federal do Ceará, instacron:UFC |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0018 seconds