Made available in DSpace on 2015-05-08T14:59:48Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 7220631 bytes, checksum: d36ace240b1aa4b1c66a0ca9ae99326d (MD5)
Previous issue date: 2012-10-18 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This paper describes elastic, static and dynamic analysis of frames using the Boundary Element Method (BEM). The superstructure is modeled for two frame structure cases (that is, plane frame and space frame) and algebraic specific representations are developed for these purposes. According to the specific cases, bending effects (Euler- Bernoulli or Timoshenko models), torsional effects (under Saint Venant assumptions) are properly operated as well as the explicit forms of displacements and efforts influence matrices and the body force vector. Special attention is paid to the problem of static soil-structure interaction. In this case the superstructure (space frame) is modeled by BEM and the soil (assumed as semiinfinite elastic solid) is represented by integral equations and algebraically systematized in BEM fashion as well. Then, the superstructure and soil algebraic systems are coupled in order to allow the soil-structure interaction analysis. Open section thin-walled beams under Vlasov torsional-flexure assumptions receive also special attention, so that a direct BEM formulation for static and vibration analysis is established. Hence, here it is propposed integral equations, fundamental solution and algebraic representations which incorporate all secondary fields (forces, moments and bimoment) and primary fields (displacements, rotations and warping). For vibration case, both integral and algebraic equations are deduced for bi-coupled problems ( monosymmetric cross-section) and triply-coupled problems (nonsymmetric cross-sections). / Neste trabalho são descritas análises elásticas (estática e vibratória) de pórticos, utilizando o Método dos Elementos de Contorno (MEC). A superestrutura é modelada para duas famílias de estruturas reticuladas (pórtico plano, pórtico espacial) e representações algébricas específicas são desenvolvidos para esse fim. Nos casos pertinentes, os efeitos de flexão (segundo as teorias de Euler-Bernoulli e Timoshenko), de torção (segundo as hipóteses de Saint Venant), são devidamente explorados assim como as formas explícitas das matrizes de influência de deslocamentos, de esforços e o vetor de forças de volume. Um enfoque especial é dado para o problema de interação solo-estrutura em regime estático. Nesse caso a superestrutura (pórtico espacial) é modelada pelo MEC e o solo (admitido como um sólido elástico semi-infinito) é representado por equações integrais e sistematizado algebricamente, também, pelo MEC. Então, os sistemas algébricos da superestrutura e do solo são compatibilizados permitindo assim a análise da interação soloestrutura. As barras de seção abertas de paredes finas incorporando o modelo de flexo-torção de Vlasov também recebem uma atenção especial, de forma que uma formulação direta do MEC para a análise estática e vibratória é estabelecida. Assim, aqui são propostas as equações integrais, soluções fundamentais e representações algébricas, que incorporam todos os campos secundários (forças, momentos e bi-momentos) e os campos primários (deslocamentos, rotações, empenamentos). No caso do problema de vibração, as representações integrais e algébricas são deduzidas para os problemas bi-acoplados (seções monossimétricas) e tri-acoplados (seções não-simétricas).
Identifer | oai:union.ndltd.org:IBICT/oai:tede.biblioteca.ufpb.br:tede/5355 |
Date | 18 October 2012 |
Creators | Cruz, José Marcílio Filgueiras |
Contributors | Mendonça, Angelo Emílio Vieira |
Publisher | Universidade Federal da Paraíba, Programa de Pós-Graduação em Engenharia Mecânica, UFPB, BR, Engenharia Mecânica |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Format | application/pdf |
Source | reponame:Biblioteca Digital de Teses e Dissertações da UFPB, instname:Universidade Federal da Paraíba, instacron:UFPB |
Rights | info:eu-repo/semantics/openAccess |
Relation | 3562149281793654633, 600, 600, 600, 600, 5792267035407506340, -6956026795191561793, 3590462550136975366 |
Page generated in 0.0027 seconds