Le paraxylène (pX), utilisé dans la fabrication de l'acide téréphtalique pour la production de nylon, est principalement produit par isomérisation de la coupe aromatique C8. Cette dernière est principalement composée des trois isomères du xylènes (para, ortho et méta) et de l'éthylbenzène (EB). L’EB est transformé en xylènes grâce à un catalyseur bifonctionnel comprenant à la fois une fonction acide comme la zéolithe EU-1 et une fonction hydro-déshydrogénante (HD/DHD) comme le platine. L’hydrogénation de l’EB conduit également à la production d’éthylcyclohexane, qui peut subir des réactions non désirées d’ouverture de cycle et de craquage sur la fonction acide du catalyseur. Au cours de ce travail, nous avons cherché à comprendre les facteurs influant sur la sélectivité du catalyseur bifonctionnel en hydroconversion de l’éthylcyclohexane (ECH), et à identifier des phases acides zéolithiques très sélectives. L’effet de paramètres tels que le ratio et la proximité entre sites acides et sites HD/DHD, la localisation des sites acides au sein du réseau zéolithique, et la topologie de ce réseau zéolithique, a été examiné. Des études catalytiques ont été mises en œuvre sur des séries de catalyseurs bifonctionnels à base de zéolithe EU-1, et interprétées à la lueur de calculs ab initio focalisés sur les mécanismes d’isomérisation et d’ouverture de cycle de l’ECH sur la phase acide EU-1. L’intégration de données thermocinétiques déterminées ab initio dans un modèle cinétique en champ moyen a permis de valider l’approche et d’identifier les étapes réactionnelles clés dictant la sélectivité. Un criblage rationnel de structures zéolithes a ensuite été proposé pour identifier les paramètres topologiques influant / The paraxylene (pX), used in the manufacture of terephtalic acid for the production of nylon, is mainly produced by isomerization of the C8 aromatic cut. The latter is mainly composed of the three xylene isomers (para, ortho and meta) and ethylbenzene (EB). EB is converted into xylenes by mean of a bifunctional catalyst comprising both an acid function, such as EU-1 zeolite, and a hydro-dehydrogenating function (HD / DHD), such as platinum. The hydrogenation of EB also leads to the production of ethylcyclohexane, which can undergo undesired ring-opening and cracking reactions on the acid function of the catalyst. In this work, we tried to understand the factors influencing the selectivity of the bifunctional catalyst in the hydroconversion of ethylcyclohexane (ECH), and to identify very selective zeolitic acid phases. The effect of parameters such as the ratio and proximity between acid and HD / DHD sites, the location of acid sites within the zeolite network, and the topology of this zeolite network, was evaluated. Catalytic studies have been carried out over bifunctional catalysts series based on the EU-1 zeolite, and interpreted considering ab initio calculations focused on the isomerization and ring-opening mechanisms of ECH on the EU-1 acid phase. The integration of thermokinetic data (determined by ab initio calculations) in a mean field kinetic model made it possible to validate the approach and to identify the key reaction steps dictating the selectivity. A rational screening of zeolite structures was then proposed to identify the influential topological parameters
Identifer | oai:union.ndltd.org:theses.fr/2018LYSE1240 |
Date | 20 November 2018 |
Creators | Gutierrez Acebo, Ester |
Contributors | Lyon, Schuurman, Yves |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0018 seconds