Les turbines aéronautiques doivent satisfaire à des normes d'émissions polluantes toujours en baisse. La qualité du mélange du carburant et de l'air dans la chambre de combustion est responsable de la formation de polluants nocifs pour l'environnement. La simulation aux grandes échelles (LES) permet d'étudier les mécanismes de mélanges turbulents de l'air et du carburant. La prise en compte de l'aspect liquide du carburant injecté devient nécessaire pour prédire correctement l'apparition de vapeur de carburant au sein du foyer. Le but de cette thèse est évaluer la fiabilité des simulations LES Euler-Euler dans une configuration complexe. Les processus d'injection, et d'évaporation du carburant liquide sont analysés et modélisés dans les simulations LES car ils pilotent la formation de vapeur de carburant. Les méthodes numériques pour résoudre les équations continues de la phase dispersée doivent permettre des simulations précises et robustes dans une configuration représentative d'une chambre de combustion. Les simulations présentées dans ces travaux reproduisent l'écoulement diphasique évaporant non-réactif du banc d'essai Mercato. Ce banc est équipé d'un système d'injection d'air vrillé et d'un atomiseur pressurisé-swirlé de kérosène typiques des foyers aéronautiques réels. Dans ces travaux, le modèle pour l'injection de liquide FIM-UR a été développé pour définir les conditions limites conduisant à un spray issu d'un atomiseur préssurisé-swirlé. Le kérosène employé dans les campagnes expérimentales est modélisé dans les simulations par un composé permettant d'obtenir des temps d'évaporation réalistes. Trois stratégies numériques ont été mises en place sur la configuration MERCATO. Les comparaisons des résultats numériques aux mesures expérimentales ont permis d'évaluer la stratégie numérique conduisant à la meilleure précision. L'utilisation du schéma centré TTGC associé à un opérateur de viscosité artificielle localisée par un senseur adapté est optimale lorsque l'équation sur l'énergie décorrélée des gouttes est résolue. Cette stratégie permet de contrôler la localisation et les niveaux de viscosité par rapport à un schéma décentré. Les termes sources liés au mouvement mésoscopique permettent de redistribuer l'énergie dans les zones de compression ou de détente de la phase dispersée, et d'obtenir les bonnes répartitions des fluctuations dans la chambre de combustion. La stratégie retenue est comparée aux statistiques de la dynamique du spray résolu par une approche Lagrangienne employant la même injection monodispersse. Le méthode Euler-Euler conduit à la même précision de la dynamique de la phase dispersée que la méthode Euler-Lagrange. L'accès à l'évolution instationnaire de l'écoulement permet d'identifier les mêmes mécanismes de dispersion et de mélange dans les deux simulations. Des différences sur la répartition de diamètre moyen et de carburant dans la chambre ont été mis en évidence et reliés à la polydispersion locale qui n'est pas résolue dans l'approche Euler-Euler monodisperse et qui apparaît naturellement dans l'approche Euler-Lagrange malgré l'injection monodisperse.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00451199 |
Date | 14 December 2009 |
Creators | Sanjose, Marlène |
Publisher | Institut National Polytechnique de Toulouse - INPT |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0021 seconds