Return to search

Wechselwirkung eines tongesteinsrelevanten Mikroorganismus mit Uran und Europium

Die sichere Entsorgung hochradioaktiver Abfälle stellt eine wichtige wissenschaftli-che und gesellschaftliche Herausforderung dar. Tongesteine sind potentielle Wirts-gesteine für die Endlagerung dieser Abfälle in einem geologischen Tiefenlager. Ben-tonite sollen dabei als Verfüllmaterial nicht nur für ein Endlager in Tonformationen, sondern auch in kristallinem Gestein dienen. Für eine langfristige Sicherheitsbewer-tung müssen verschiedene Aspekte berücksichtigt werden. Neben geologischen, ge-ochemischen und geophysikalischen Gesichtspunkten spielen auch natürlich vor-kommende Mikroorganismen eine entscheidende Rolle in der Umgebung eines sol-chen Endlagers. Gelangt in einem Worst-Case-Szenario Wasser in das Endlager, können diese mit den freigesetzten Radionukliden wechselwirken und beispielswei-se die chemische Speziation oder den Oxidationszustand verändern.
In dieser Arbeit wurden die Wechselwirkungen des anaeroben, sulfatreduzierenden Bakteriums Desulfosporosinus hippei DSM 8344T, einem Vertreter der Gattung Desul-fosporosinus, die in Tongestein und Bentonit vorkommt, mit Uran(VI) und Europi-um(III) mit Hilfe verschiedener mikroskopischer, spektroskopischer und molekular-biologischer Methoden untersucht. Die Ergebnisse lieferten einen umfassenden Einblick in die ablaufenden Wechselwirkungsprozesse und zeigten deutliche Unter-schiede zwischen den untersuchten Elementen auf. Im Zuge dessen wurde ein be-sonderes Augenmerk auf die Untersuchung der Reduktion von Uran(VI) durch D. hippei DSM 8344T gelegt. Für dieses Element konnte eine Immobilisierung in einem gekoppelten Assoziations-Reduktionsmechanismus nachgewiesen werden. Im Ge-gensatz dazu wechselwirkte nur ein geringer Anteil des gelösten Europium(III) mit den Zellen des anaeroben Mikroorganismus, wobei eine teilweise Biopräzipitation von Europiumphosphat beobachtet werden konnte.
Die Wechselwirkung des Mikroorganismus mit Uran(VI) wurde zunächst in einem Bikarbonat-gepufferten System untersucht, wobei keine Abnahme der Urankon-zentrationen nachgewiesen werden konnte und damit wahrscheinlich auch keine Reduktion von Uran(VI) in den Überständen erfolgte. Zusätzlich wurden die Expe-rimente in synthetischer Opalinustonporenlösung durchgeführt. Die Untersuchun-gen mit zwei verschiedenen Uran(VI)-Ausgangskonzentrationen (100 µM und 500 µM) zeigten dabei in beiden Fällen eine fast vollständige Entfernung des Urans aus den Überständen.
Um genauere Informationen über die Uran(VI)-Speziation in den Überständen zu erhalten, wurden thermodynamische Berechnungen der auftretenden Komplexe sowohl in Bikarbonat-Puffer, als auch in synthetischer Opalinustonporenlösung durchgeführt. Ergänzend dazu wurden die Überstände der Versuche in der Poren-lösung lumineszenzspektroskopisch untersucht. Die thermodynamische Modellie-rung zeigte bei dem pH-Wert des Bikarbonat-Puffersystems (pH 6,8) die Dominanz des 1:3-Uranyl(VI)-Carbonat-Komplexes, wohingegen im Porenwasser (pH 5,5) ein Uranyl(VI)-Laktat-Komplex die vorrangige Spezies darstellte. Die Anwesenheit eines zusätzlichen Carbonat-Komplexes spielte in diesem Fall nur eine untergeordnete Rolle. Die Berechnungen konnten mit Hilfe der Lumineszenzspektroskopie bestätigt werden. Sowohl der dominante Laktat-Komplex, als auch ein geringer Anteil eines Uranyl(VI)-Carbonat-Komplexes konnten im Opalinustonporenwasser verifiziert werden. Die Speziesverteilung zeigte, dass nur der Anteil des Laktat-Komplexes mit steigenden Inkubationszeiten abnahm, wohingegen der Anteil des Carbonat-Komplexes konstant blieb. Dies bestätigte die Ergebnisse der Experimente in Bikar-bonat-Puffer und ließ Schlussfolgerungen dahingehend zu, dass der Carbonat-Komplex von den Zellen offenbar nicht reduziert werden konnte und dadurch die Bioreduktion von der Ausgangsspeziation des Uran(VI) abhängig ist.
Fluoreszenzmikroskopische Aufnahmen wiesen einen Einfluss des Urans auf die Zellvitalität und die Biofilmbildung nach. Mit Hilfe der Transmissionselektronenmik-roskopie konnte die Assoziation von Uran vorrangig auf der Zelloberfläche gezeigt werden. Zudem bildeten die Zellen Membranvesikel als mögliche Abwehrreaktion aus, um eine Verkrustung der Zellen zu verhindern. Diese Beobachtungen deuten auf eine Immobilisierung des Urans durch Wechselwirkung mit den Zellen hin.
Die Reduktion des Uran(VI) wurde mit Hilfe verschiedener spektroskopischer Me-thoden bestätigt. Dabei zeigten UV/Vis-Untersuchungen der aufgelösten Zellpellets zunächst einen steigenden Anteil an Uran(IV) mit fortschreitender Inkubationszeit. Eine vollständige Reduktion des Urans konnte hingegen nicht nachgewiesen wer-den. HERFD-XANES-Messungen bestätigten die Reduktion des Uran(VI) in den Zell-pellets. Darüber hinaus konnte die Anwesenheit von Uran(V) während des Redukti-onsprozesses beobachtet werden, wodurch ein Ein-Elektronen-Prozess als Redukti-onsmechanismus für diesen Mikroorganismus verifiziert werden konnte. Des Weite-ren handelte es sich dabei um den erstmaligen Nachweis von Uran(V) während der Bioreduktion von Uran(VI) durch sulfatreduzierende Mikroorganismen im Allge-meinen. Ergänzende EXAFS-Untersuchungen konnten die Struktur der Uran(IV)-Verbindung hingegen nicht abschließend aufklären.
Mittels Proteomikuntersuchungen als systembiologische Methode konnten Hinweise auf verschiedene während der Uraninkubation stattfindender Prozesse, wie bspw. die Biofilmbildung, den Zellwandumbau und eine Hochregulierung verschiedener Proteine, die in anderen Mikroorganismen für die Reduktion von Uran und anderen Metallen verantwortlich sind, gefunden werden. Des Weiteren konnten auch ver-schiedene Enzyme die an einer Stressreaktion der Zellen beteiligt sind nachgewiesen werden.
In den Experimenten mit Europium(III), welches häufig als nicht radioaktives Ana-logon für die dreiwertigen Actinide zum Einsatz kommt, zeigten die Zellen nur eine geringe Wechselwirkung mit dem Lanthanid. Der toxische Einfluss des Schwerme-talls war geringer als in den Untersuchungen mit Uran(VI). Transmissionselektro-nenmikroskopische Aufnahmen zeigten eine Biopräzipitation von Europium(III) mit Phosphaten auf der Zelloberfläche und dadurch eine teilweise Immobilisierung des Metalls.
Die aquatische Speziation des Europium(III) zeigte eine vollständige Komplexierung mit Laktat in den Überständen. Dies könnte eine mögliche Erklärung der geringen Wechselwirkung mit den Zellen liefern aufgrund einer Abschirmung des Lanthanids gegenüber zellulären Liganden. In den Zellspektren, ließen sich drei unterschiedli-che Spezies voneinander unterscheiden, eine lose mit den Zellen assoziierte Spezies und zwei zellulär gebundene Komplexe wahrscheinlich mit Carboxyl- oder Phos-phatgruppen. Eine ortsaufgelöste Speziation war mit Hilfe einer Kopplung von kon-fokaler Mikroskopie und Laserspektroskopie möglich.
Zusammenfassend liefert diese Arbeit neue Erkenntnisse über die Wechselwirkung sulfatreduzierender Mikroorganismen mit Uran(VI) und Europium(III) und trägt zu einem besseren Verständnis mikrobieller Reduktionsprozesse in der Umwelt bei. Die Immobilisierung von Uran durch eine teilweise Reduktion zu weniger löslichen Uran(IV)-Verbindungen, sowie eine verstärkte Biofilmbildung wirken sich positiv auf die Sicherheit eines Endlagers für hochradioaktive Abfälle in Tongestein aus. Es konnte allerdings auch gezeigt werden, dass stattfindende Wechselwirkungsprozes-se von der Ausgangsspeziation des Metalls abhängen, wodurch die Retention der Radionuklide möglicherweise eingeschränkt wird. Dadurch spielen die erhaltenen Ergebnisse nicht nur eine wichtige Rolle für ein umfassendes Sicherheitskonzept eines nuklearen Endlagers in Tongestein, sondern liefern auch neue Impulse für verschiedene Bioremediationsstrategien radioaktiv kontaminierter Umgebungen. / The safe disposal of high-level radioactive waste is a major scientific and societal challenge. Clay rocks are potential host rocks for the final disposal of the nuclear waste in a deep geological repository. Bentonites should serve as backfill material for a repository not only in clay formations, but also in crystalline rocks. Various aspects have to be considered for a long-term safety assessment. In addition to geological, geochemical and geophysical aspects, naturally occurring microorganisms in the en-vironment of such a repository play a decisive role. In the event of a worst-case sce-nario, if water enters the repository, these microorganisms can interact with the re-leased radionuclides and, for example, change the chemical speciation or oxidation state.
In this work, the interactions of the anaerobic sulfate-reducing bacterium Desul-fosporosinus hippei DSM 8344T, a member of the genus Desulfosporosinus, which can be found in clay rock and bentonite, with uranium(VI) and europium(III) were in-vestigated using various microscopic, spectroscopic and molecular biological meth-ods. The results provided a comprehensive insight into the interaction processes and revealed significant differences between the investigated elements. Special attention was paid to the reduction of uranium(VI) by D. hippei DSM 8344T. For this element, an immobilization in a coupled association-reduction mechanism was demonstrated. In contrast, only a small fraction of the dissolved europium(III) interacted with the cells of the anaerobic microorganism, and a partial bioprecipitation of europium phosphate was observed.
The interaction of the microorganism with uranium(VI) was first investigated in a bicarbonate-buffered system, where no decrease in uranium concentrations was observed, and thus probably no reduction of uranium(VI) occurs. In addition, ex-periments in synthetic Opalinus Clay pore solution were carried out. The investiga-tions with two different initial uranium(VI) concentrations (100 µM and 500 µM) showed an almost complete removal of uranium from the supernatants in both cas-es.
Thermodynamic calculations of the complexes formed were performed in both, bi-carbonate buffer and synthetic Opalinus Clay pore water solution, to obtain more detailed information on uranium(VI) speciation in the supernatants. In addition, the supernatants of the pore water solution were analyzed by luminescence spectrosco-py. Thermodynamic modeling showed the dominance of the 1:3 uranyl(VI)-carbonate complex at the pH of the bicarbonate buffered system (pH 6.8), whereas in the pore water (pH 5.5) a uranyl(VI) lactate complex was the predominant spe-cies. The presence of an additional carbonate complex plays only a minor role in this case. The calculations were confirmed by luminescence spectroscopy. Both the dom-inant lactate complex and a small fraction of a uranyl(VI) carbonate complex could be detected in the Opalinus Clay pore water. The species distribution showed that only the proportion of the lactate complex decreased with increasing incubation times, while the proportion of the carbonate complex remained constant. This con-firmed the results of the experiments in bicarbonate buffer and led to the conclu-sion that the carbonate complex could not be reduced by the cells and therefore the bioreduction was dependent on the initial speciation of uranium(VI).
Fluorescence microscopic images showed an influence of uranium on cell viability and biofilm formation. Transmission electron microscopy showed the association of uranium primarily on the cell surface. In addition, the cells formed membrane vesi-cles as a possible defense mechanism to prevent cell incrustation. These observa-tions indicated an immobilization of uranium by its interaction with the cells.
The reduction of uranium(VI) was confirmed by various spectroscopic methods. UV/Vis studies of the dissolved cell pellets showed an increasing amount of urani-um(IV) with increasing incubation time. However, a complete reduction of uranium could not be detected. HERFD-XANES measurements verified the reduction of ura-nium(VI) in the cell pellets. In addition, the presence of uranium(V) was observed during the reduction process, confirming a one-electron process as the reduction mechanism for this microorganism. Furthermore, this was the first detection of ura-nium(V) during a bioreduction experiment of uranium(VI) by a sulfate-reducing microorganism in general. However, additional EXAFS studies could not conclusively elucidate the structure of the formed uranium(IV) compound.
Using proteomics as a system biology method, evidence was found for various pro-cesses occurring during uranium incubation, such as biofilm formation, cell wall re-modeling, and up-regulation of various proteins responsible for the reduction of uranium and other metals in other microorganisms. In addition, several enzymes involved in a stress response of the cells were detected.
In experiments with europium(III), which is often used as a non-radioactive analog of the trivalent actinides, the cells showed little interaction with the lanthanide. Compared to the studies with uranium(VI), the toxic influence of the heavy metal was less pronounced. Transmission electron microscopic images showed a bioprecip-itation of europium(III) with phosphates on the cell surface, resulting in partial im-mobilization of the metal.
The aqueous speciation of europium(III) showed a complete complexation with lac-tate in the supernatants. This could be a possible explanation for the low interaction with the cells due to a shielding of the lanthanide from cellular ligands. In the cell spectra, three different species could be distinguished, one loosely associated with the cells and two cellularly bound complexes, probably with carboxyl or phosphate groups. A spatially resolved speciation could be detected by coupling confocal mi-croscopy and laser spectroscopy.
To summarize, this work provides new insights into the interaction of sulfate-reducing microorganisms with uranium(VI) and europium(III) and contributes to a better understanding of microbial reduction processes in the environment. The im-mobilization of uranium by a partial reduction to less soluble uranium(IV) com-pounds, as well as the enhanced biofilm formation, have a positive effect on the safety of a repository for highly radioactive waste in clay rock. However, it has also been shown that the interaction processes that take place depend on the initial spe-ciation of the metal, which may limit the retention of radionuclides. Thus, the ob-tained results not only play an important role for a comprehensive safety concept of a repository for nuclear waste in clay rock, but also provide new impulses for differ-ent bioremediation strategies of radioactively contaminated environments.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa:de:qucosa:89406
Date16 February 2024
CreatorsHilpmann, Stephan
ContributorsStumpf, Thorsten, Schäfer, Thorsten, Technische Universität Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageGerman
Detected LanguageGerman
Typeinfo:eu-repo/semantics/publishedVersion, doc-type:doctoralThesis, info:eu-repo/semantics/doctoralThesis, doc-type:Text
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0038 seconds