In this dissertation, we explore the problem of fault detection and fault diagnosis for systems modeled as condition systems. A condition system is a Petri net based framework of components which interact with each other and the external environment through the use of condition signals. First, a system FAULT is defined as an observed behavior which does not correspond to any expected behavior, where the expected behavior is defined through condition system models. A DETECTION is the determination that the system is not behaving as expected according to the model of the system. A DIAGNOSIS of this fault localizes the subsystem that is the source of the discrepancy between output and expected observations. We characterize faults as a behavior relaxation of model components. We then show that detection and diagnosis can be determined in a finite number of calculations. The exact solution can be computationally involved, so we also present methods to perform a rapid detection and diagnosis. We have also included a chapter on a conversion from the condition system framework into a linear-time temporal logic(LTL) framework.
Identifer | oai:union.ndltd.org:uky.edu/oai:uknowledge.uky.edu:gradschool_diss-1344 |
Date | 01 January 2004 |
Creators | Ashley, Jeffrey |
Publisher | UKnowledge |
Source Sets | University of Kentucky |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | University of Kentucky Doctoral Dissertations |
Page generated in 0.0069 seconds