Return to search

Projecting Planning-Related Climate Impact Drivers for Appalachian Public Health Support

Climate change is impacting the intensity, duration, and frequency of climatic events. With climate change comes a multitude of adverse conditions, including extreme heat events, changes in disease patterns, and increased likelihood and frequency of natural disasters, including in places previously not exposed to such conditions. Human health has foundations in the environment; therefore, these adverse climatic conditions are directly linked to human health. Rural communities in Appalachia are likely to experience negative consequences of climate change more severely due to unique geomorphology and sociopolitical realities of the region. Non-governmental organizations (NGOs) throughout the Appalachian region are currently working to build resilience and prepare for potential adverse effects from climate change. To aid in this process, projections of future climate scenarios are needed to understand possible situations and adequately prepare. In partnership with Ohio University and West Virginia University, this study aims to characterize potential future climatic scenarios from publicly-available global climate models (GCMs) and prepare information to share with Appalachian communities.
Climate model information for this analysis was obtained from NASA's Coupled Model Intercomparison Project (CMIP6). All code for data processing and analysis was prepared using the open-source R programming language to support reproducibility. To confirm that models can accurately simulate Appalachian climatic conditions, CMIP6 hindcast simulations for precipitation and maximum temperature were compared to observed weather records from NOAA. Climate models over and underestimated average precipitation values depending on location, while models consistently underestimated extreme precipitation values, simulated by total five-day precipitation. For temperature, climate models consistently underestimated average and extreme high temperature indicators.
For Appalachian region projections, three towns of interest (one for each state involved in the study: Virginia, West Virginia, and Ohio) were selected based on current community resilience efforts. In these locations, mid-century (2040 – 2064) and end-of-century (2075 – 2099) projections for precipitation and temperature were summarized under a low emissions scenario and a high emissions scenario. Increases in precipitation and temperature were observed under average and extreme scenarios; these increases were noticeably more extreme under higher emissions scenarios. These trends are consistent with other studies and climate science consensus. When compared to hindcast values, observed average precipitation values were overestimated and underestimated, while observed extreme precipitation indices, average temperatures, and heat wave indices were underestimated by GCMs. Context with observed data is important to understanding model accuracy for the Appalachian region. GCMs are a useful tool to project potential future climate scenarios at specific locations in the Appalachian region, though model data is best used to communicate general trends rather than as inputs for other physical models. / Master of Science / Climate change is driving previously unseen changes in many aspects of the environment. Among these aspects, and of particular concern, are increased precipitation and increased high temperatures, which have direct negative outcomes on human health. Climate change can impact human health in a variety of ways, such as increasing instances of heat-related illnesses like heatstroke, changing insect-carried diseases patterns (i.e. Lyme disease, malaria), worsening preexisting conditions like asthma, and increasing the likelihood of natural disasters like flooding. Climate change also impacts mental health, especially increasing instances of anxiety and post-traumatic stress disorder from disasters. Rural communities like Appalachia are more likely to experience severe negative outcomes due to lack of resources, remote location, and economies historically based on resource extraction. Appalachia specifically also faces unique challenges with flooding, as many towns are situated in valleys with streams or rivers running through the center of town.
To address and prepare for possible climate change outcomes, community-based planning is required to build resiliency. Throughout many areas, but specifically in Appalachia, many community-based organizations are already working to strengthen their communities by providing stable housing, addressing flooding, and preparing emergency response teams. To aid in these efforts, information about potential future climate is beneficial to these organizations to understand and prepare for potential conditions. This study aims to use publicly-available climate models to generate information about possible future climate conditions to be shared with community organizations. Additionally, this project's datasets and procedures are publicly available, so this analysis can be performed by communities anywhere in the world given they have adequate computing power.
To check that models are a good indicator of previous climate conditions, and therefore would be useful for future projections, historic projected climate model outputs were compared to observed weather data. After confirming that the models used were fairly consistent with observed data, projected values for midcentury (2040 – 2064) and end-of-century (2075 – 2099) were gathered for Appalachian towns with interested community organizations. Projected values show increases in high temperatures and precipitation throughout the Appalachian region, including in short-term event scenarios, which is consistent with other climate science. Higher emissions scenarios result in greater increases in average and extreme temperature and precipitation values. Climate models can be a useful tool in understanding potential general climatic trends for a specific location and can support climate science communication.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/120636
Date10 July 2024
CreatorsLarsson, Natalie Anne
ContributorsBiological Systems Engineering, Shortridge, Julie Elizabeth, Krometis, Leigh Anne Henry, Kruse-Daniels, Natalie
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
LanguageEnglish
Detected LanguageEnglish
TypeThesis
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0029 seconds