Return to search

Conserved noncoding sequences regulate steady-state mRNA levels in Arabidopsis thaliana

<p> <i>Arabidopsis thaliana</i> has undergone three whole genome duplications within its ancestry, and these events have dramatically affected its gene complement. Of the most recent whole genome duplication events (&alpha; event), there remain 11,452 conserved noncoding sequences (CNSs) that have been retained proximal to &alpha; duplicate gene pairs. As functional DNA elements are expected to diverge in sequence at a slower rate than nonfunctional DNA elements, the retained CNSs likely encode gene regulatory function. Within this dissertation I provide evidence for the regulatory role of CNSs within <i> Arabidopsis thaliana</i>. Using a collection of over 5,000 microarray RNA expression profiling datasets, I demonstrate that the presence of CNSs near &alpha; duplicate pairs is correlated with changes in average expression intensity (AEI), &alpha; duplicate pair co-expression, mRNA stability, and breadth of gene expression. The effects of CNSs on AEI, co-expression, and mRNA stability vary relative to their subgene position, because they are located in nontranscribed (5&rsquo;-upstream and 3&rsquo;-downstream) and transcribed (5&rsquo;- UTR, intronic and 3&rsquo;-UTR) regions. Modeling gene interactions through the generation of co-expression networks, I also demonstrate that a portion of CNSs participate in known gene regulatory networks. Collectively, this body of work demonstrates that CNSs regulate steady-state mRNA levels within Arabidopsis thailiana through both transcriptional and post-transcriptional mechanisms.</p>

Identiferoai:union.ndltd.org:PROQUEST/oai:pqdtoai.proquest.com:3565242
Date09 August 2013
CreatorsSpangler, Jacob Brian
PublisherClemson University
Source SetsProQuest.com
LanguageEnglish
Detected LanguageEnglish
Typethesis

Page generated in 0.0024 seconds