Evolutionary methods are shown to be useful in developing behaviors in robotics. Interest in the use of evolution in swarm robotics is also on the rise. However, when one attempts to use artificial evolution to develop behaviors for a swarm robotic system, he is faced with decisions to be made regarding some parameters of fitness evaluations and of the genetic algorithm. In this thesis, aggregation behavior is chosen as a case, where performance and scalability of aggregation behaviors of perceptron controllers that are evolved for a simulated swarm robotic system are systematically studied with different parameter settings. Using a cluster of computers to run simulations in parallel, four experiments are conducted varying some of the parameters. Rules of thumb are derived, which can be of guidance to the use of evolutionary methods to generate other swarm robotic behaviors as well.
Identifer | oai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/12606315/index.pdf |
Date | 01 August 2005 |
Creators | Bahceci, Erkin |
Contributors | Sahin, Erol |
Publisher | METU |
Source Sets | Middle East Technical Univ. |
Language | English |
Detected Language | English |
Type | M.S. Thesis |
Format | text/pdf |
Rights | To liberate the content for public access |
Page generated in 0.0018 seconds