Return to search

ExMinerSOF: minerando informa??es excepcionais do Stackoverflow / ExMinerSOF: mining exceptional information from StackOverflow

Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-11-01T21:17:48Z
No. of bitstreams: 1
TeresaDoCarmoBarretoFernandes_DISSERT.pdf: 5261298 bytes, checksum: 1a7e32ec8483e6e7e31101df7f8675f9 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-11-07T21:08:03Z (GMT) No. of bitstreams: 1
TeresaDoCarmoBarretoFernandes_DISSERT.pdf: 5261298 bytes, checksum: 1a7e32ec8483e6e7e31101df7f8675f9 (MD5) / Made available in DSpace on 2017-11-07T21:08:03Z (GMT). No. of bitstreams: 1
TeresaDoCarmoBarretoFernandes_DISSERT.pdf: 5261298 bytes, checksum: 1a7e32ec8483e6e7e31101df7f8675f9 (MD5)
Previous issue date: 2017-06-30 / Exce??es n?o capturadas (do ingl?s: uncaught) n?o s?o cen?rios excepcionais nas aplica??es
Java atuais. Eles s?o, na verdade, uma das principais causas de falha das aplica??es
Java - que podem originar-se de erros de programa??o (e.g., acesso a refer?ncias nulas);
falhas no hardware ou em APIs utilizadas. Essas exce??es uncaught resultam em stack
traces que s?o frequentemente usados pelos desenvolvedores como fonte de informa??es
para a depura??o. Atualmente, essa informa??o ? frequentemente usada pelos desenvolvedores
em mecanismos de busca ou sites de perguntas e respostas (do ingl?s: Question and
Answer - Q&A) para tentar compreender melhor a causa do crash e assim poder resolv?lo.
Este estudo fez a minera??o de stack traces inclu?das nas perguntas e respostas do
StackOverflow (SOF). O objetivo deste estudo foi: (i) identificar caracter?sticas das stack
traces mineradas do SOF e (ii) investigar como tais informa??es podem ser usadas para
evitar exce??es uncaught durante o desenvolvimento de software. Neste estudo, 121.253
stack traces foram extra?das e analisadas em combina??o com inspe??es de postagens do
SOF. Tamb?m ? proposta a ferramenta ExMinerSOF, que alerta o desenvolvedor sobre
as exce??es que podem ser potencialmente sinalizadas por um m?todo de API. Essas
informa??es s?o descobertas aplicando uma estrat?gia de minera??o apresentada neste
trabalho. Ao faz?-lo, a ferramenta permite que o desenvolvedor evite falhas com base em
falhas relatadas por outros desenvolvedores. / Uncaught exceptions are not an exceptional sce- nario in current Java applications. They
are actually one of the main causes of applications crashes, which can originate from programming
errors on the application itself (null pointer dereferences); faults in underlying
hardware or re-used APIs. Such uncaught exceptions result in exception stack traces that
are often used by developers as a source of information for debugging. Currently, this
information is ofttimes used by developers on search engines or Question and Answer
sites while the developer tries to: better understand the cause of the crash and solve it.
This study mined the exception stack traces embedded on StackOverflow (SOF) questions
and answers. The goal of this work was to two-fold: to identify characteristics of stack
traces mined from SOF and to investigate how such information can be used to prevent
uncaught exceptions during software development. Overall 121.253 exception stack traces
were extracted and analyzed in combination with Q&A inspections. Hence, this study
proposes ExMinerSOF tool, which alerts the developer about the exceptions that can be
potentially signaled by an API method but are not part of the API documentation - and
was discovered by applying a mining strategy in SOF repository. Doing so, the tool enable
the developer to prevent faults based on failures reported by the crowd.

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufrn.br:123456789/24202
Date30 June 2017
CreatorsFernandes, Teresa do Carmo Barr?to
Contributors02727172400, Medeiros Neto, Francisco Dantas de, 00735640440, Silva, Lyrene Fernandes da, 02097798454, Kulesza, Uira, 02219235432, Coelho, Roberta de Souza
PublisherPROGRAMA DE P?S-GRADUA??O EM SISTEMAS E COMPUTA??O, UFRN, Brasil
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFRN, instname:Universidade Federal do Rio Grande do Norte, instacron:UFRN
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds