In the first part of this thesis, motivated by the development of deep brain stimulation for Parkinson's disease, we consider the problem of reducing the synchrony of a neuronal population via a closed-loop electrical stimulation. This, under the constraints that only the mean membrane voltage of the ensemble is measured and that only one stimulation signal is available (mean-field feedback). The neuronal population is modeled as a network of interconnected Landau-Stuart oscillators controlled by a linear single-input single-output feedback device. Based on the associated phase dynamics, we analyze existence and robustness of phase-locked solutions, modeling the pathological state, and derive necessary conditions for an effective desynchronization via mean-field feedback. Sufficient conditions are then derived for two control objectives: neuronal inhibition and desynchronization. Our analysis suggests that, depending on the strength of feedback gain, a proportional mean-field feedback can either block the collective oscillation (neuronal inhibition) or desynchronize the ensemble.In the second part, we explore two possible ways to analyze related problems on more biologically sound models. In the first, the neuronal population is modeled as the interconnection of nonlinear input-output operators and neuronal synchronization is analyzed within a recently developed input-output approach. In the second, excitability and synchronizability properties of neurons are analyzed via the underlying bifurcations. Based on the theory of normal forms, a novel reduced model is derived to capture the behavior of a large class of neurons remaining unexplained in other existing reduced models.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00695029 |
Date | 06 April 2012 |
Creators | Franci, Alessio |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0016 seconds