Among the many examples of Bose condensation considered in physics, electron-hole-pair (exciton) condensation has maintained special interest because it has been difficult to realize experimentally, and because of controversy about condensate properties. In this thesis, we studied the various aspects of spontaneous symmetry broken state of exciton in bilayer using mean field theory. We calculated the photoluminescence of excitonic condensation created by laser. We developed a one-dimensional toy model of excitonic supercurrent using mean field theory plus non-equilibrium Green’s function (NEGF) which give qualitatively consistent results with experiments. We proposed graphene bilayer as a novel system for excitonic condensation to occur and estimate it to exist even at temperature as high as room temperature. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/17911 |
Date | 14 September 2012 |
Creators | Su, Jung-Jung |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Format | electronic |
Rights | Copyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works. |
Page generated in 0.0016 seconds