Return to search

TIRE DEFORMATION MODELING AND EFFECT ON AERODYNAMIC PERFORMANCE OF A P2 RACE CAR

<div>The development work of a race car revolves around numerous goals such as drag reduction,</div><div>maximizing downforce and side force, and maintaining balance. Commonly, these goals</div><div>are to be met at the same time thus increasing the level of difficulty to achieve them. The</div><div>methods for data acquisitions available to a race team during the season is mostly limited to</div><div>wind tunnel testing and computational fluid dynamics, both of which are being heavily regulated</div><div>by sanctioning bodies. While these methods enable data collection on a regular basis</div><div>with repeat-ability they are still only a simulation, and as such they come with some margin</div><div>of error due to a number of factors. A significant factor for correlation error is the effect of</div><div>tires on the flow field around the vehicle. This error is a product of a number of deficiencies</div><div>in the simulations such as inability to capture loaded radius, contact patch deformation in</div><div>Y direction, sidewall deformation and overall shifts in tire dimensions. These deficiencies</div><div>are evident in most WT testing yet can be captured in CFD. It is unknown just how much</div><div>they do affect the aerodynamics performance of the car. That aside, it is very difficult to</div><div>correlate those findings as most correlation work is done at WT which has been said to be</div><div>insufficient with regards to tire effect modeling. Some work had been published on the effect</div><div>of tire deformation on race car aerodynamics, showing a large contribution to performance</div><div>as the wake from the front tires moves downstream to interact with body components. Yet</div><div>the work done so far focuses mostly on open wheel race cars where the tire and wheel assembly</div><div>is completely exposed in all directions, suggesting a large effect on aerodynamics.</div><div>This study bridges the gap between understanding the effects of tire deformation on race car</div><div>aerodynamics on open wheel race cars and closed wheel race cars. The vehicle in question</div><div>is a hybrid of the two, exhibiting flow features that are common to closed wheel race cars</div><div>due to each tire being fully enclosed from front and top. At the same time the vehicle is</div><div>presenting the downstream wake effect similar to the one in open wheel race cars as the</div><div>rear of the wheelhouse is open. This is done by introducing a deformable tire model using</div><div>FEA commercial code. A methodology for quick and accurate model generation is presented</div><div>to properly represent true tire dimensions, contact patch size and shape, and deformed dimension,</div><div>all while maintaining design flexibility as the model allows for different inflation</div><div>pressures to be simulated. A file system is offered to produce CFD watertight STL files that</div><div>can easily be imported to a CFD analysis, while the analysis itself presents the forces and</div><div>flow structures effected by incorporating tire deformation to the model. An inflation pressure</div><div>sweep is added to the study in order to evaluate the influence of tire stiffness on deformation</div><div>and how this results in aerodynamic gain or loss. A comparison between wind tunnel</div><div>correlation domain to a curved domain is done to describe the sensitivity each domain has</div><div>with regards to tire deformation, as each of them provides a different approach to simulating</div><div>a cornering condition. The Study suggests introducing tire deformation has a substantial</div><div>effect on the flow field increasing both drag and downforce.In addition, flow patterns are</div><div>revealed that can be capitalized by designing for specific cornering condition tire geometry.</div><div>A deformed tire model offers more stable results under curved and yawed flow. Moreover,</div><div>the curved domain presents a completely different side force value for both deformed and</div><div>rigid tires with some downforce distribution sensitivity due to inflation pressure.</div>

  1. 10.25394/pgs.14905218.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/14905218
Date11 August 2021
CreatorsROTEM LIVNY (11071605)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY 4.0
Relationhttps://figshare.com/articles/thesis/TIRE_DEFORMATION_MODELING_AND_EFFECT_ON_AERODYNAMIC_PERFORMANCE_OF_A_P2_RACE_CAR/14905218

Page generated in 0.0016 seconds