The ability to perform well during the sprint start and early acceleration phases of sprint running is critical. Many forms of training interventions are utilised to give a sprinter a competitive edge over their opponents in these particular phases. Despite this fact, there has been limited research on the technical and power type training strategies appropriate to improve sprint kinematics and the associated sprint performance in the sprint start and early acceleration phases. PURPOSE: To determine the best sprint start and early acceleration phase kinematic determinants, investigate the effect that load has on the kinematics of the sprint start and early acceleration performance and to determine how various physical characteristics may influence both resisted and unresisted sprint running. METHODS: Ten male track sprinters (mean ± SD: age 20 ± 3 years; height 1.82 ± 0.06 m; weight 76.7 ± 7.9 kg; 100 m personal best: 10.87 + 0.36 s {10.37 - 11.42 s}) attended two testing sessions. The first session required the athletes to sprint twelve 10 m sprints from a block start under unresisted and resisted (10% & 20% body mass) sled conditions. The second session required each athlete to complete an anthropometric assessment (height, mass, 3 bone lengths, 2 bone widths) and a variety of vertical (squat jump, countermovement jump, continuous straight legged jump) and horizontal (single leg hop for distance, single leg triple hop for distance) jump tests (3 trials each). Centre of gravity, joint and segment kinematics were calculated from 2D analysis utilising a kinematic analysis system (Ariel Performance Analysis System, U.S.A.). Means and standard deviations are presented for kinematic and performance measures. Pearson's product-moment correlation coefficients were employed to establish relationships between sprint start (block) performance variables and 10 m sprint performance. A linear regression analysis was used to quantify the relationships between the dependent variables (start performance and 10 m sprint time) and selected kinematic independent variables. ANOVA's with repeated measures were used to determine if there was a significant interaction between the kinematics under the various loaded conditions. A stepwise multiple regression and linear regression analysis were used for the prediction of unresisted and resisted sprint times from anthropometrical and functional performance measures. RESULTS: Mean horizontal block acceleration was identified as the start performance variable with the strongest relationship to 10 m sprint time. The most significant kinematic predictors of mean horizontal block acceleration were a large horizontal block velocity, short start time, and low thigh angle of the front block leg with respect to the horizontal at block takeoff. Sprint time over 10 m was best predicted by a large mean horizontal block acceleration (sprint start performance), increased angle of the front arm shoulder at step takeoff, and increased angle of front upper arm at step takeoff. Sprint start kinematics significantly altered as a result of resisted sled towing were start time (increase) and push-off angle from the blocks (decrease). Step length, stance time and propulsion time significantly increased, whereas flight time and flight distance significantly decreased under loaded conditions. A load of 20% body mass was revealed to be the better training load to utilise during resisted sled sprinting, especially for athletes who performed faster than 2.10 s for a 10 m sprint from a block start. The countermovement jump exercise was a strong predictor of both 10 m and 100 m sprint time. The continuous straight legged jump test was revealed to be a good predictor of resisted sprints over 10m.CONCLUSION: Consideration should be given to the technical training aspects of sprint start performance and forceful arm movements during step takeoff for improving sprint start and early acceleration sprint performance from starting blocks. These technical training aspects should also be supplemented with resisted sled towing with a load of 20% body mass and countermovement jump training to improve sprint ability.
Identifer | oai:union.ndltd.org:ADTP/242945 |
Creators | Maulder, Peter Scott |
Publisher | AUT University |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | All items in ScholarlyCommons@AUT are provided for private study and research purposes and are protected by copyright with all rights reserved unless otherwise indicated. |
Page generated in 0.0021 seconds