This thesis deals with two aspects of the International Linear Collider (ILC) which is a project of a linear electron-positron collider of up to at least 500 GeV center of mass energy.The first aspect is the development of a silicon-tungsten electromagnetic calorimeter (SiW-ECAL) for one of the detectors of the ILC. The concept of this detector is driven by the ILC beam specifications and by the Particle Flow Algorithm (PFA). This requires highly granular calorimeter and very compact one with integrated electronics. To prove the capability of the SiW- ECAL a technological prototype has been built and tested in test beam at DESY. The results are presented here, and show, after the calibration procedure a signal over noise ratio of 10, even in the power pulsing mode.The second aspect is the study of one of the important physics channels of the ILC, the top anti-top quark pairs production. The main goal of this study is to determine the precision that we can expect at the ILC on the top coupling with the W boson and the photon. To get this precision differents observables are used, the cross- section, the forward- backward asymmetry and the helicity distribution of the top anti-top quark pairs production. The analysis is based on the events with polarized beams and reconstructed with the full simulation of the ILD detector, which is the detector of the SIW- ECAL, for the Detector Baseline Design of the ILD. The final expected errors on the top coupling is of the order of 2%.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-01062136 |
Date | 30 June 2014 |
Creators | Rouëné, Jérémy |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | English |
Detected Language | English |
Type | PhD thesis |
Page generated in 0.0011 seconds