Return to search

Effective retrieval techniques for Arabic text

Arabic is a major international language, spoken in more than 23 countries, and the lingua franca of the Islamic world. The number of Arabic-speaking Internet users has grown over nine-fold in the Middle East between the year 2000 and 2007, yet research in Arabic Information Retrieval (AIR) has not advanced as in other languages such as English. In this thesis, we explore techniques that improve the performance of AIR systems. Stemming is considered one of the most important factors to improve retrieval effectiveness of AIR systems. Most current stemmers remove affixes without checking whether the removed letters are actually affixes. We propose lexicon-based improvements to light stemming that distinguish core letters from proper Arabic affixes. We devise rules to stem most affixes and show their effects on retrieval effectiveness. Using the TREC 2001 test collection, we show that applying relevance feedback with our rules produces significantly better results than light stemming. Techniques for Arabic information retrieval have been studied in depth on clean collections of newswire dispatches. However, the effectiveness of such techniques is not known on other noisy collections in which text is generated using automatic speech recognition (ASR) systems and queries are generated using machine translations (MT). Using noisy collections, we show that normalisation, stopping and light stemming improve results as in normal text collections but that n-grams and root stemming decrease performance. Most recent AIR research has been undertaken using collections that are far smaller than the collections used for English text retrieval; consequently, the significance of some published results is debatable. Using the LDC Arabic GigaWord collection that contains more than 1 500 000 documents, we create a test collection of~90 topics with their relevance judgements. Using this test collection, we show empirically that for a large collection, root stemming is not competitive. Of the approaches we have studied, lexicon-based stemming approaches perform better than light stemming approaches alone. Arabic text commonly includes foreign words transliterated into Arabic characters. Several transliterated forms may be in common use for a single foreign word, but users rarely use more than one variant during search tasks. We test the effectiveness of lexicons, Arabic patterns, and n-grams in distinguishing foreign words from native Arabic words. We introduce rules that help filter foreign words and improve the n-gram approach used in language identification. Our combined n-grams and lexicon approach successfully identifies 80% of all foreign words with a precision of 93%. To find variants of a specific foreign word, we apply phonetic and string similarity techniques and introduce novel algorithms to normalise them in Arabic text. We modify phonetic techniques used for English to suit the Arabic language, and compare several techniques to determine their effectiveness in finding foreign word variants. We show that our algorithms significantly improve recall. We also show that expanding queries using variants identified by our Soutex4 phonetic algorithm results in a significant improvement in precision and recall. Together, the approaches described in this thesis represent an important step towards realising highly effective retrieval of Arabic text.

Identiferoai:union.ndltd.org:ADTP/210489
Date January 2008
CreatorsNwesri, Abdusalam F Ahmad, nwesri@yahoo.com
PublisherRMIT University. Computer Science and IT
Source SetsAustraliasian Digital Theses Program
LanguageEnglish
Detected LanguageEnglish
Rightshttp://www.rmit.edu.au/help/disclaimer, Copyright Abdusalam F Ahmad Nwesri

Page generated in 0.0016 seconds