Return to search

Multistage adaptive testing based on logistic positive exponent model / Teste adaptativo multiestágio baseado no modelo logístico de expoente positivo

The Logistic Positive Exponent (LPE) model from Item Response Theory (IRT) and the Multistage Adaptive Testing (MST) using this model are the focus of this dissertation. For the LPE, item parameter estimations efficiency was studied, it was also analyzed the latent trait estimation for different response patterns to verify the effects it has on guessing and accidental mistakes. The LPE was put in contrast to Rasch, 2 and 3 parameter logistic models to compare the its efficiency. The item parameter estimations were implemented using the Bayesian approach for the Monte Carlo Markov Chain and the Marginal Maximum Likelihood. The latent trait estimation were calculated by the Expected a Posterior method. A goodness of fit analysis were made using the Posterior Predictive model-check method and information statistics. In the MST perspective, the LPE was compared with the Rasch and 2 logistic models. Different tests were constructed using methods that uses optimization functions to select items from a bank. Three functions were chosen to this task: the Fisher and Kullback-Leibler informations and the Continuous Entropy Method. The results were obtained with simulated and real data, the latter was from a general science knowledge test calls General Science test and it was provided by the Educational Testing Service company. Results showed that the LPE might help individuals that made mistakes in earlier stage of the test, especially for easy items. However, the LPE requires a large individual sample and time to estimate the item parameters making it an expensive model. MST based on LPE can be dissolve the impact of accidental mistakes from high performance test takers depending of the item pool available and the way the test is constructed. The optimization function performance vary depending of the situation. / O modelo Logístico de Expoente Positivo (LPE) da Teoria de Resposta ao Item (IRT) e o Teste Adaptativo Multiestágio (MST) sob esse modelo são os focos desta tese. Para o LPE, a eficiência da estimações dos parâmetros dos itens foram estudados, também foi analisado como as estimativas dos parâmetros dos indivíduos foram influenciados por padrões de respostas contendo chutes ou erros acidentais. O LPE foi comparado com os modelos de Rasch, Logístico de 2 e 3 Parâmetros para verificar seu desempenho. A estimação dos parâmetros dos itens foi implementada usando Monte Carlo via cadeias de Markov sob a abordagem Bayesiana e a Máxima Verossimilhança Marginal. As estimações dos traços latentes foram calculadas através do Método da Esperança a Posteriori. A qualidade do ajuste dos modelos foram analisadas usando o método Posterior Predictive model-check e critério de informações. Sob o contexto do MST, o LPE foi comparado com os modelos de Rasch e Logístico de 2 Parâmetro. Os MSTs foram construídos usando diferentes funções de objetivas que selecionaram os itens de bancos para comporem os testes. Três funções foram escolhidas para esse trabalho: As informações de Fisher e Kullback-Leibler e o Continuous Entropy Method. Os resultados para dados simulados e reais foram obtidos, os dados reais eram consituídos de respostas a perguntas sob conhecimento científico de do General Science test que foram fornecidos pela empresa Educational Testing Service. Resultados mostraram que o LPE pode ajudar os indivíduos que cometeram erros acidentais nas primeiras perguntas do teste, especialmente para os itens fáceis. Entretanto, este modelo requer tempo e uma grande quantidade de amostras de indivíduos para calcular as estimativas dos parâmetros dos itens o que o torna um modelo caro. O MST sob o modelo LPE pode diminuir o impacto de erros acidentais cometidos por examinandos com alto desempenho dependendo dos itens disponíveis no banco e a forma de construção do MST. O desempenho das funções objetivas variaram de acordo com cada situação.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-24032017-101011
Date08 December 2016
CreatorsThales Akira Matsumoto Ricarte
ContributorsMariana Cúri, Jorge Luis Bazán Guzmán, Caio Lucidius Naberezny Azevedo, Alina von Davier, Carlos Alberto Ribeiro Diniz, Heliton Ribeiro Tavares
PublisherUniversidade de São Paulo, Estatística, USP, BR
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0027 seconds