<p dir="ltr">Object tracking in cislunar space has become an area of interest within many communities where cislunar space domain awareness (SDA) is critical to operations. Due to the influence of both the Earth and Moon on objects in this domain, the classical two body problem does not accurately describe the dynamics of the state. Legacy tracking capabilities fall short in providing accurate state estimates due to the large volume of space and the highly non-linear dynamics involved. In order to advance SDA in cislunar space, tracking capabilities must be updated for this domain. </p><p dir="ltr">Both the Extended Kalman Filter (EKF) and Gaussian Mixture Extended Kalman Filter (GM-EKF) are used for orbit determination in this thesis along side the Circular Restricted Three Body Problem (CR3BP) to model the non-linear dynamics. The filters are utilized to determine the best estimate of the state as well as its covariance. The two filter's performances are compared to highlight areas in which the assumptions surrounding the EKF are violated resulting in failed tracking, as well as to highlight the power of the GM-EKF for non-linear systems using splitting and merging techniques. </p><p dir="ltr">This thesis presents single and multiple object tracking of objects in a multitude of cislunar orbits using a Moon ground-based sensor. Multiple object tracking is accomplished using a novel Lyapunov-based scheduler in order to reduce the total system uncertainty. The environment is modeled to include exclusion zones which preclude measurements. These zones consist of conjunction from the Earth and Sun, brightness constraints, and camera field of regard (FOR). When measurements are unavailable the uncertainty in the state estimation rises significantly.</p><p dir="ltr">An investigation of varied sensor placements and Sun-Earth-Moon geometries provides results to inform locations and trends which are able to confidently track both single and multiple objects in cislunar orbits. </p>
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/25586988 |
Date | 12 April 2024 |
Creators | Erin M Jarrett-Izzi (18347736) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/thesis/Moon-Based_Non-Gaussian_Multi-Object_Tracking_for_Cislunar_Space_Domain_Awareness/25586988 |
Page generated in 0.0551 seconds