Return to search

Nonlinear Estimation Techniques Applied To Econometric

This thesis considers the filtering and prediction problems of nonlinear noisy econometric systems. As a filter/predictor, the standard tool Extended Kalman Filter and new approaches Discrete Quantization Filter and Sequential Importance Resampling Filter are used. The algorithms are compared by using Monte Carlo Simulation technique. The advantages of the new algorithms over Extended Kalman Filter are shown.

Identiferoai:union.ndltd.org:METU/oai:etd.lib.metu.edu.tr:http://etd.lib.metu.edu.tr/upload/3/12605649/index.pdf
Date01 December 2004
CreatorsAslan, Serdar
ContributorsDemirbas, Kerim
PublisherMETU
Source SetsMiddle East Technical Univ.
LanguageEnglish
Detected LanguageEnglish
TypeM.S. Thesis
Formattext/pdf
RightsTo liberate the content for public access

Page generated in 0.0022 seconds